Skip to main content

Imaging the Ethiopian Rift Region Using Transdimensional Hierarchical Seismic Noise Tomography

Abstract

The Ethiopian Rift is a unique natural environment to study the different stages of evolution from initial continental rifting to embryonic seafloor spreading. We used transdimensional hierarchical Bayesian seismic ambient noise tomography to first construct group velocity maps across the Afar, Main Ethiopian Rift, and the adjoining plateaus, and then inverted these for a shear wave velocity model. The uppermost mantle shear wave velocity ranges between 3.9 and 4.3 km/s, 5–15% lower than the upper mantle velocity in the PREM model. The combined effect of temperature and partial melt is needed to explain a 15% shear wave velocity reduction in the uppermost mantle. Tectonic and magmatic activities are not limited to the rift center, but instead are widespread within the upper crust beneath the Main Ethiopian Rift and Afar. The Main Ethiopian Rift is dominated by two velocity belts, the Wonji Fault Belt along the rift axis and the Silti-Debre Zeit Fault Zone on the western side of the Central Main Ethiopian Rift; the Boru-Toru structural high appears to serve as a transfer zone between them, exhibiting relatively high crustal velocities (3.6 km/s) at 14 km depth. Low velocities persist in the crust beneath the rift flanks and border faults, indicating that they are still tectonically and magmatically active. The crust beneath the western plateau is characterized by a low-velocity anomaly, implying that the plateau is also active. Low-velocity linear belts are further imaged beneath the western and eastern plateaus, away from the active rift axes. These off-axis belts could represent failed or buried rifts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

(Adapted from Keir et al. (2009)). Selected volcanic centers are indicated with green squares. BTSH, Boru–Toru Structural High; ENE-LVB, east north east-trending low-velocity belt

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

source studies (Makris & Ginzburg, 1987), respectively

Fig. 12
Fig. 13

References

  1. Abbate, E., Bruni, P., and Sagri, M. (2015). Geology of Ethiopia: A Review and Geomorphological Perspectives. In P. Billi (Ed.) Landscapes and landforms of Ethiopia. Dordrecht: Springer, pp. 33–64. https://doi.org/10.1007/978-94-017-8026-1_2.

  2. Abebe, T., Abeba, A., Pira, La., Maria, V. S., & Maria, V. S. (1998). The Yerer-Tullu Wellel volcanotectonic lineament: a transtensional structure in central Ethiopia and the associated magmatic activity. Journal of African Earth Sciences, 26, 135–150.

    Article  Google Scholar 

  3. Acocella, V., Abebe, B., Korme, T., & Barberi, F. (2008). Structure of Tendaho Graben and Manda Hararo Rift: Implications for the evolution of the southern Red Sea propagator in Central Afar. Tectonophysics, 27, TC4016. https://doi.org/10.1029/2007TC002236

    Article  Google Scholar 

  4. Acton, C. E., Priestley, K., Gaur, V. K., & Rai, S. S. (2010). Group velocity tomography of the Indo-Eurasian collision zone. Journal of Geophysical Research, 115, 1–16. https://doi.org/10.1029/2009JB007021

    Article  Google Scholar 

  5. Asfaw, L. M. (1992). Seismic risk at a site in the East African rift system. Tectonophysics, 209, 301–309.

    Article  Google Scholar 

  6. Audin, L., Quidelleur, X., Couli, E., Courtillot, V., Gilder, S., Manighetti, I., Gillot, P., Tapponnier, P., & Kidane, T. (2004). Palaeomagnetism and K-Ar and 40 Ar / 39 Ar ages in the Ali Sabieh area ( Republic of Djibouti and Ethiopia ): constraints on the mechanism of Aden ridge propagation into southeastern Afar during the last 10 Myr. Geophysical Journal International, 158, 327–345. https://doi.org/10.1111/j.1365-246X.2004.02286.x

    Article  Google Scholar 

  7. Ayalew, D. (2011). The relations between felsic and mafic volcanic rocks in continental flood basalts of Ethiopia: Implication for the thermal weakening of the crust Gondor Bahir Dar Injibara Dessie. THe Geological Society of London, 357, 253–264. https://doi.org/10.1144/SP357.13

    Article  Google Scholar 

  8. Ayele, A., Stuart, G., Bastow, I., & Keir, D. (2007). The August 2002 earthquake sequence in north Afar: Insights into the neotectonics of the Danakil microplate. Journal of African Earth Sciences, 48, 70–79. https://doi.org/10.1016/j.jafrearsci.2006.06.011

    Article  Google Scholar 

  9. Bastow, I. D., & Keir, D. (2011). The protracted development of the continent—ocean transition in Afar. Nature Geoscience. https://doi.org/10.1038/ngeo1095

    Article  Google Scholar 

  10. Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169, 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x

    Article  Google Scholar 

  11. Beyene, A., & Abdelsalam, M. G. (2005). Tectonics of the Afar depression: A review and synthesis. Journal of African Earth Sciences, 41, 41–59. https://doi.org/10.1016/j.jafrearsci.2005.03.003

    Article  Google Scholar 

  12. Bilham, R., Bendick, R., Larson, K., Braun, J., Tesfaye, S., Mohr, P., & Asfaw, L. (1999). Secular and tidal strain across the Ethiopian rift. Geophysical Research Letters, 27, 2789–2984.

    Article  Google Scholar 

  13. Bodin, T., & Sambridge, M. (2009). Seismic tomography with the reversible jump algorithm. Geophysical Journal International, 178, 1411–1436. https://doi.org/10.1111/j.1365-246X.2009.04226.x

    Article  Google Scholar 

  14. Bodin, T., Sambridge, M., Rawlinson, N., & Arroucau, P. (2012). Transdimensional tomography with unknown data noise. Geophysical Journal International, 189, 1536–1556. https://doi.org/10.1111/j.1365-246X.2012.05414.x

    Article  Google Scholar 

  15. Bonini, M., Corti, G., Innocenti, F., Manetti, P., Mazzarini, F., Abebe, T., & Pecskay, Z. (2005). Evolution of the Main Ethiopian Rift in the frame of Afar and Kenya rifts propagation. Tectonics, 24, 1–21. https://doi.org/10.1097/SLA.0000000000001986

    Article  Google Scholar 

  16. Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the earth’s crust. Bulletin of the Seismological Society of America, 95, 2081–2092. https://doi.org/10.1785/0120050077

    Article  Google Scholar 

  17. Buck, W.R. (2006). The role of magma in the development of the Afro-Arabian Rift System. In G. Yirgu, C.J. Ebinger and P.K.H. Maguire (Eds.) The Afar Volcanic Province within the East African Rift System. TGeological Society, London, Special Publications, vol. 259, pp. 43–54.

  18. Campillo, M., & Paul, A. (2003). Long-range correlations in the diffuse seismic coda. Science, 299, 547–549.

    Article  Google Scholar 

  19. Chambers, E. L., Harmon, N., Keir, D., & Rychert, C. A. (2019). Using ambient noise to image the Northern East African rift. Journal of Geophysical Research, 20, 2091–2109. https://doi.org/10.1029/2018GC008129

    Article  Google Scholar 

  20. Chiasera, B., Rooney, T. O., Girard, G., Yirgu, G., Grosfils, E., Ayalew, D., Mohr, P., Zimbelman, J. R., & Ramsey, M. S. (2018). Magmatically assisted off-rift extension—the case for broadly distributed strain accommodation. Geosphere, 14, 1544–1563.

    Article  Google Scholar 

  21. Corti, G. (2009). Earth-science reviews continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift. East Africa: Earth Science Reviews, 96, 1–53. https://doi.org/10.1016/j.earscirev.2009.06.005

    Article  Google Scholar 

  22. Corti, G., Molin, P., Sembroni, A., Bastow, I. D., & Keir, D. (2018). Control of pre-rift lithospheric structure on the architecture and evolution of continental rifts: insights from the main Ethiopian rift, east Africa. Tectonics, 37, 477–496. https://doi.org/10.1002/2017TC004799

    Article  Google Scholar 

  23. Daly, E., Keir, D., Ebinger, C. J., Stuart, G. W., Bastow, I. D., & Ayele, A. (2008). Crustal tomographic imaging of a transitional continental rift: The Ethiopian rift. Geophysical Journal International, 172, 1033–1048. https://doi.org/10.1111/j.1365-246X.2007.03682.x

    Article  Google Scholar 

  24. Dettmer, J., Dosso, S. E., & Holland, C. W. (2010). Trans-dimensional geoacoustic inversion. Journal of Acoustical Society of America, 128, 3393–3405. https://doi.org/10.1121/1.3500674

    Article  Google Scholar 

  25. Dettmer, J., Benavente, R., Cummins, P. R., & Sambridge, M. (2014). Trans-dimensional finite-fault inversion. Geophysical Journal International, 199, 735–751. https://doi.org/10.1093/gji/ggu280

    Article  Google Scholar 

  26. Dettmer, J., Holland, C. W., & Dosso, S. E. (2015). Transdimensional uncertainty estimation for dispersive seabed sediments transdimensional uncertainty estimation for dispersive seabed sediments. Geophysics, 78, WB63–WB76. https://doi.org/10.1190/geo2012-0358.1

    Article  Google Scholar 

  27. Dias, R. C., Julià, J., & Schimmel, M. (2015). Rayleigh-wave, group-velocity tomography of the Borborema province, NE Brazil, from ambient seismic noise. Pure and Applied Geophysics, 172, 1429–1449. https://doi.org/10.1007/s00024-014-0982-9

    Article  Google Scholar 

  28. Dugda, M. T., Nyblade, A. A., Julia, J., Langston, C. A., Ammon, C. J., & Simiyu, S. (2005). Crustal structure in Ethiopia and Kenya from receiver function analysis: Implications for rift development in eastern Africa. Journal of Geophysical Research, 110, B01303. https://doi.org/10.1029/2004JB003065

    Article  Google Scholar 

  29. Dugda, M. T., Nyblade, A. A., & Julia, J. (2007). Thin lithosphere beneath the ethiopian plateau revealed by a joint inversion of Rayleigh wave group velocities and receiver functions. Journal of Geophysical Research, 112, 1–14. https://doi.org/10.1029/2006JB004918

    Article  Google Scholar 

  30. Dziewonski, A., Bloch, A., & Landisman, M. (1969). A technique for the analysis of transient seismic signals. Bulletin of the Seismological Society of America, 59, 427–444.

    Article  Google Scholar 

  31. Eagles, G., Gloaguen, R., & Ebinger, C. (2002). Kinematics of the Danakil microplate. Earth and Planetary Science Letters, 203, 607–620.

    Article  Google Scholar 

  32. Ebinger, C., & Casey, M. (2001). Continental breakup in magmatic provinces: An Ethiopian example. Geological Society of America, 29, 527–530.

    Google Scholar 

  33. Ebinger, C., Ayele, A., Keir, D., Rowland, J., Yirgu, G., Wright, T., Belachew, M., & Hamling, I. (2010). Length and timescales of rift faulting and magma intrusion: The afar rifting cycle from 2005 to present. Earth and Planetary Science Letters, 38, 437–464. https://doi.org/10.1146/annurev-earth-040809-152333

    Article  Google Scholar 

  34. Eshetu, A., Mammo, T., & Tilmann, F. (2021). Ambient noise tomography model of the Ethiopian rift region. GFZ Data Services. https://doi.org/10.5880/GFZ.2.4.2021.007

  35. Faul, U. H., & Jackson, I. (2005). The seismological signature of temperature and grain size variations in the upper mantle. Earth and Planetary Science Letters, 234, 119–134. https://doi.org/10.1029/2001JB001225

    Article  Google Scholar 

  36. Ferguson, D. J., Maclennan, J., Bastow, I. D., Pyle, D. M., Jones, S. M., Keir, D., Blundy, J. D., Plank, T., & Yirgu, G. (2013). Melting during late-stage rifting in Afar is hot and deep. Nature, 498, 70–73. https://doi.org/10.1038/nature12292

    Article  Google Scholar 

  37. Galetti, E., Curtis, A., Baptie, B., Jenkins, D., & Nicolson, H. (2016). Transdimensional Love-wave tomography of the British Isles and shear-velocity structure of the East Irish Sea Basin from ambient-noise interferometry. Geophysical Journal International, 2016, 1–46.

    Google Scholar 

  38. Gao, S. (2009). Four-dimensional anatomy of continental rifts transitioning into sea floor spreading: Insights from afar, Ethiopia for oil and gas exploration of global rift systems and passive continental margins. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/ZK_2009

    Article  Google Scholar 

  39. Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–732.

    Article  Google Scholar 

  40. Hammond, J. O. S., Kendall, J.-M., Stuart, G. W., Keir, D., Ebinger, C., Ayele, A., & Belachew, M. (2011). The nature of the crust beneath the Afar triple junction: evidence from receiver functions. Geochemistry, Geophysics, Geosystems, 12, Q12004. https://doi.org/10.1029/2011GC003738.

    Article  Google Scholar 

  41. Herrmann, R. B. (1973). Some aspects of band-pass filtering of surface waves. Bulletin of the Seismological Society of America, 63, 663–671.

    Article  Google Scholar 

  42. Hermann R. B., & Ammon C. J. (2002). Computer programs in seismology: surface waves, receiver functions and crustal structure. St. Louis, MO: St. Louis University.

  43. Hofmann, C., Courtillot, V., Feraud, G., Rochette, P., Yirgu, G., Ketefo, E., & Pik, R. (1997). Timing of theEthiopian floodbasalt event and implications forplume birthand global change. Letters to Nature, 389, 838–841.

    Article  Google Scholar 

  44. Jackson, I., Faul, U. H., & Skelton, R. (2014). Elastically accommodated grain-boundary sliding: New insights from experiment and modeling. Physics of the Earth and Planetary Interiors, 228, 203–210.

    Article  Google Scholar 

  45. Kazmin, V., Berhe, S. M., Nicoletti, M., & Petrucciani, C. (1980). Evolution of the northern part of the Ethiopian rift: Rendiconti dell’Accademia Nazionale dei Lincei. Rome, 47, 275–292.

    Google Scholar 

  46. Kearey, P., & Vine, F. J. (2004). Global tectonics. Blackwell Science.

    Google Scholar 

  47. Keir, D., & Hammond, J. O. S. (2009). AFAR0911: International federation of digital. Seismograph Networks. https://doi.org/10.7914/SN/2H_2009

    Article  Google Scholar 

  48. Keir, D., Ebinger, C. J., Stuart, G. W., Daly, E., & Ayele, A. (2006). Strain accommodation by magmatism and faulting as rifting proceeds to breakup: Seismicity of the northern Ethiopian rift. Journal of Geophysical Research, 111, 1–17. https://doi.org/10.1029/2005JB003748

    Article  Google Scholar 

  49. Keir, D., Bastow, I. D., Daly, E., & Cornwell, D. G. (2009). Lower crustal earthquakes near the Ethiopian rift induced by magmatic processes. Geochemistry Geophysics, Geosystems, 10, 1–10. https://doi.org/10.1029/2009GC002382

    Article  Google Scholar 

  50. Keranen, K., & Klemperer, L. (2008). Discontinuous and diachronous evolution of the Main Ethiopian Rift: Implications for development of continental rifts. Earth and Planetary Science Letters, 265, 96–111. https://doi.org/10.1016/j.epsl.2007.09.038

    Article  Google Scholar 

  51. Keranen, K., Klemperer, J., Julia, J., Lawrence, J. F., & Nyblade, A. A. (2009). The Main Ethiopian rift: A narrow rift in a Hot Craton? Geochemistry, Geophysics Geosystems, 10, Q0AB01. https://doi.org/10.1029/2008GC002293

    Article  Google Scholar 

  52. Kim, S., Nyblade, A. A., Rhie, J., Baag, C. E., & Kang, T. S. (2012). Crustal S-wave velocity structure of the Main Ethiopian Rift from ambient noise tomography. Geophysical Journal International, 191, 865–878. https://doi.org/10.1111/j.1365-246X.2012.05664.x

    Article  Google Scholar 

  53. Kogan, L., Fisseha, S., Bendick, R., Reilinger, R., Mcclusky, S., King, R., & Solomon, T. (2012). Lithospheric strength and strain localization in continental extension from observations of the East African Rift. Journal of Geophysical Research, 117, B03402. https://doi.org/10.1029/2011JB008516

    Article  Google Scholar 

  54. Korostelev, F., et al. (2015). Magmatism on rift flanks: Insights from ambient noise phase velocity in Afar region. Geophysical Research Letters, 42, 2179–2188. https://doi.org/10.1002/2015GL063259

    Article  Google Scholar 

  55. Kurkura, K. (2010). Geological and geochemical variations in Mid-Tertiary Ethiopian Flood Basalt Province, Maychew, Tigray Region, Ethiopia. Department of Earth Science, College of Natural and Computational Sciences, 2, 4–25.

    Google Scholar 

  56. Levshin, A.L., Yanovskaya, T.B., Lander, A. V, Buckchin, B.G., Barmin, M.P., and Ratnikova, L.I. (1989) In V.I. Keilis-Borok (Ed.) Seismic surface waves in a laterally inhomogeneous Earth. Kluwer, Norwell, Mass.

  57. Macgregor, D. (2015). History of the development of the East African rift system: A series of interpreted maps through time. Journal of African Earth Sciences, 101, 232–252. https://doi.org/10.1016/j.jafrearsci.2014.09.016

    Article  Google Scholar 

  58. Mackenzie, G. D., Thybo, H., & Maguire, P. K. H. (2005). Crustal velocity structure across the Main Ethiopian Rift: Results from two-dimensional wide-angle seismic modelling. Geophysical Journal International, 162, 994–1006. https://doi.org/10.1111/j.1365-246X.2005.02710.x

    Article  Google Scholar 

  59. Maguire, P. K. H., & SEIS-UK. (2002). A new dimension for UK seismology. Astronomy and Geophysics, 42, 23–25.

    Google Scholar 

  60. Maguire, P. K. H., et al. (2003). Geophysical Project in Ethiopia studies continental breakup: EOS. Transactions of the American Geophysical Union, 84, 337–340. https://doi.org/10.1029/2003EO350002

    Article  Google Scholar 

  61. Maguire, P. K. H., et al. (2006). Crustal structure of the northern Main Ethiopian Rift from the EAGLE controlled-source survey; a snapshot of incipient lithospheric break-up. Geological Society London, Special Publications, 259, 269–291.

    Article  Google Scholar 

  62. Makris, J., & Ginzburg, A. (1987). The Afar Depression: Transition between continental rifting and sea-floor spreading. Tectonophysics, 141, 199–214.

    Article  Google Scholar 

  63. Mammo, T. (2013). Crustal structure of the flood basalt province of Ethiopia from constrained 3-D gravity inversion. Pure and Applied Geophysics, 170, 493–744. https://doi.org/10.1007/s00024-013-0663-0

    Article  Google Scholar 

  64. Manighetti, I., King, G. C. P., & Gaudemer, Y. (2001). Slip accumulation and lateral propagation of active normal faults in Afar. Journal of Geophysical Research, 106, 13667–13669.

    Article  Google Scholar 

  65. Merla, G., Abbate, E., Azzaroli, A., Bruni, P., Fazzuoli, M., Sagri, M., & Tacconi, P. (1979). Comments and a geological map of Ethiopia and Somalia. Scale 1:2,000,000. Consiglio Nazionale delle Ricerche, taly, Firenze. p. 89.

  66. Mohr, P. A. (1970). Ethiopian rift and plateaus: Some volcanic petrochemical differences. Journal of Geophysical Research, 76, 1967–1983.

    Article  Google Scholar 

  67. Mohr, P. (1983). Ethiopian flood basalt province. Nature, 303, 577–584.

    Article  Google Scholar 

  68. Mohr, P. A., & Potter, E. C. (1976). The Sagatu Ridge Dike Swarm, Ethiopian Rift margin. Journal of Volcanology and Geothermal Research, 1, 55–71.

    Article  Google Scholar 

  69. Mohr, P., Mitchell, J. G., & Raynolds, R. G. H. (1980). Quaternary volcanism and faulting at O’A Caldera, Central Ethiopian Rift. Bulletin of Volcanology, 1980, 43–51.

    Google Scholar 

  70. Mohr, P., and Zanetin, B. (1988) The ethiopian flood basalt Province. In J. D. Macdougall (Ed.) ContinenJal flood basalts, pp. 63–110.

  71. Muluneh, A. A., Cuffaro, M., & Doglioni, C. (2014). Tectonophysics left-lateral transtension along the Ethiopian rift and constrains on the mantle-reference plate motions. Tectonophysics. https://doi.org/10.1016/j.tecto.2014.05.036

    Article  Google Scholar 

  72. Muluneh, A. A., Kidane, T., Corti, G., & Keir, D. (2018). Constraints on fault and crustal strength of the main Ethiopian rift from formal inversion of earthquake focal mechanism data. Tectonophysics. https://doi.org/10.1016/j.tecto.2018.03.010

    Article  Google Scholar 

  73. Nyblade, A. (2000). Seismic investigation of deep structure beneath the Ethiopian plateau and afar depression. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/XI_2000

    Article  Google Scholar 

  74. Peccerillo, A., Donati, C., Santo, A. P., Orlando, A., Yirgu, G., & Ayalew, D. (2007). Petrogenesis of silicic peralkaline rocks in the Ethiopian rift: Geochemical evidence and volcanological implications. Journal of African Earth Sciences, 48, 161–173. https://doi.org/10.1016/j.jafrearsci.2006.06.010

    Article  Google Scholar 

  75. Penn State University (2004). AfricaArray [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/AF

  76. Pham, T. S., Tkalčić, H., Sambridge, M., & Kennett, B. L. N. (2018). Earth’s correlation wavefield: Late coda correlation. Geophysical Research Letters, 45, 3035–3042. https://doi.org/10.1002/2018GL077244

    Article  Google Scholar 

  77. Piccirillo, E. M., Justin-Visentin, E., Zanettin, B., Joron, J. L., & Treuil, M. (1979). Geodynamic evolution from plateau to rift: Major and trace element geochemistry of the central eastern Ethiopian Plateau volcanics. N Jb. Geol. Palaont. ABH, 158, 139–179.

    Google Scholar 

  78. Ray, A., & Key, K. (2012). Bayesian inversion of marine CSEM data with a trans-dimensional self parametrizing algorithm. Geophysical Journal International, 191, 1135–1151. https://doi.org/10.1111/j.1365-246X.2012.05677.x

    Article  Google Scholar 

  79. Rochette, P., Tamrat, E., & Fe, G. (1998). Magnetostratigraphy and timing of the Oligocene Ethiopian traps. Earth and Planetary Science Letters, 164, 497–510.

    Article  Google Scholar 

  80. Rogers, N.W. (2006). Basaltic magmatism and the geodynamics of the East African Rift System. In G. Yirgu, C.J. Ebinger and P.K.H. Maguire (Eds.) The Afar volcanic province within the East African Rift System. Geological Society, London, Special Publications, vol. 259, pp. 77–93.

  81. Rooney, T. O., Furman, T., Yirgu, G., & Ayalew, D. (2005). Structure of the Ethiopian lithosphere: Xenolith evidence in the Main Ethiopian Rift. Geochimica Et Cosmochimica Acta, 69, 3889–3910. https://doi.org/10.1016/j.gca.2005.03.043

    Article  Google Scholar 

  82. Rooney, T., Furman, T., Bastow, I., Ayalew, D., & Yirgu, G. (2007). Lithospheric modification during crustal extension in the Main Ethiopian Rift. Journal of Geophysical Research, 112, B10201. https://doi.org/10.1029/2006JB004916

    Article  Google Scholar 

  83. Ryberg, T., Muksin, U., & Bauer, K. (2016). Ambient seismic noise tomography reveals a hidden caldera and its relation to the Tarutung pull-apart basin at the Sumatran Fault Zone, Indonesia. Journal of Volcanology and Geothermal Research, 321, 73–84. https://doi.org/10.1016/j.jvolgeores.2016.04.035

    Article  Google Scholar 

  84. Sambridge, M., Gallagher, K., Jackson, A., & Rickwood, P. (2006). Transdimensional inverse problems, model comparison and the evidence. Geophysical Journal International, 167, 528–542. https://doi.org/10.1111/j.1365-246X.2006.03155.x.

    Article  Google Scholar 

  85. Sembroni, A., Faccenna, C., Becker, T. W., Molin, P., & Abebe, B. (2016). Long-term, deep-mantle support of the Ethiopia-Yemen Plateau. Tectonics, 35, 469–488. https://doi.org/10.1002/2015TC004000.Received

    Article  Google Scholar 

  86. Shapiro, N. M., & Campillo, . (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Journal of Geophysical Research, 31, L07614. https://doi.org/10.1029/2004GL019491

    Article  Google Scholar 

  87. Souriot, T., & Brun, J. (1992). Faulting and block rotation in the Afar triangle:the Danakil “crank arm” model. Geology, 20, 911–914.

    Article  Google Scholar 

  88. Stuart, G. W., Bastow, I. D., & Ebinger, C. J. (2006). Crustal structure of the northern Main Ethiopian Rift from receiver function studies. Geological Society London, Special Publications, 259, 253–267. https://doi.org/10.1144/GSL.SP.2006.259.01.20

    Article  Google Scholar 

  89. Tilmann, F. J., Sadeghisorkhani, H., & Mauerberger, A. (2020). Another look at the treatment of data uncertainty in Markov chain Monte Carlo inversion and other probabilistic methods. Geophysical Journal International., 222, 388–405.

    Article  Google Scholar 

  90. USGS, A.S.L. (1988). Global Seismograph Network (GSN - IRIS/USGS): International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/IU.

  91. Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556–5564. https://doi.org/10.1029/2019GC008515.

    Article  Google Scholar 

  92. White, R., & Mckenzie, D. (1989). Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 94, 7685–7729.

    Article  Google Scholar 

  93. Woldegabriel, G., Aronson, J., & Walter, R. C. (1990). Geology, geochronology, and rift basin development in the central sector of the Main Ethiopia Rift. Geological Society of America Bulletin, 102, 439–458.

    Article  Google Scholar 

  94. Woldegabriel, G., Heiken, G., White, T. D., Hart, W. K., & Renne, P. R. (2000). Volcanism, tectonism, sedimentation, and the paleoanthropo- logical record in the Ethiopian Rift System. In McCoy, F. W., & Heiken, G. (Eds.), Volcanic Hazards and Disasters in Human Antiquity. Boulder, Colorado, Geological Society of America Special Paper 345.

  95. Wolfenden, E., Ebinger, C., Yirgu, G., Deino, A., & Ayalew, D. (2004). Evolution of the northern Main Ethiopian rift: Birth of a triple junction. Earth and Planetary Science Letters, 224, 213–228. https://doi.org/10.1016/j.epsl.2004.04.022

    Article  Google Scholar 

  96. Wright, T. J., Ebinger, C., Biggs, J., Ayele, A., Yirgu, G., Keir, D., & Stork, A. (2006). Magma-maintained rift segmentation at continental rupture in the 2005 Afar Dyking Episode. Nature, 442, 291–294. https://doi.org/10.1038/nature04978

    Article  Google Scholar 

  97. Yirgu, G., Ebinger, C. J., & Maguire, P. K. H. (2006). The afar volcanic province within the East African rift system: Introduction. Geological Society of London, 259, 1–6. https://doi.org/10.1144/GSL.SP.2006.259.01.01

    Article  Google Scholar 

  98. Young, M. K., Rawlinson, N., & Bodin, T. (2013). Transdimensional inversion of ambient seismic noise for 3D shear velocity structure of the Tasmanian crust. Geophysics, 2013, 78.

    Google Scholar 

  99. Zanettin, B., & Justin-Visentin, E. (1974). The Volcanic succession in Central ethiopia: the volcanics of western afar and Ethiopian rift margins. Mem Ist Min Univ Padova, 31, 1–19.

    Google Scholar 

  100. Zanettin, B., Gregnanin, A., Justin-Visentin, E., Nicoletti, E., Petrucciani, C., Piccirillo, E. M., & Tolomeo, L. (1974). Migration of the oligocene- miocene ignimbritic volcanism in the Central Ethiopan plateau. NGB Geol Palaeo Mh H, 9, 567–574.

    Google Scholar 

  101. Zanettin, B., Justin, V. E., Nicoletti, E., & Piccirillo, E. M. (1980). Correlations among Ethiopian volcanic formations with special references to the chronological and stratigraphical problems of the “Trap Series.” Atti Convegni Acc Lincei Roma, 47, 231–252.

    Google Scholar 

  102. Zanettin, B., Justin-Visentin, E. (1975). Tectonical and volcanological evolution of the western Afar margin (Ethiopia). In A. Pilger, E.A. Roesler (Eds.) Afar depression of Ethiopia. Schweizerbart, Stuttgart, pp. 300–309.

  103. Zanettin, B. (1993). On the evolution of the Ethiopian volcanic province. In Abbate, E. et al. (Eds.) Geology and mineral resources of Somalia and surrounding regions. Ist. Agron: Oltremare, Firenze, Relaz. Monogr. Agrar. SubtroTrop., Nuova Ser, vol. 113, pp. 279–310.

Download references

Acknowledgements

Addis Eshetu was supported by DAAD (Deutscher Akademischer Austausch Dienst) short term research scholarship to visit GFZ (Deutsches GeoForschungsZentrum). The raw data used in this study are freely available from the IRIS Data Management Center (IRISDMC): https://www.fdsn.org/networks/. Most of the figures were created using the Generic Mapping Tools (Wessel et al., 2019). We thank two anonymous reviewers of an earlier version of this manuscript for detailed comments that helped to improve the manuscript. The electronic version of the velocity model can be accessed as a supplementary dataset (Eshetu et al., 2021) at the following URL https://dataservices.gfz-potsdam.de/panmetaworks/review/c5b7a3d9a5f2c476067b1ae4f91cf296929d55e980e8b522fbf92e48844bf068/

Author information

Affiliations

Authors

Corresponding author

Correspondence to Addis Eshetu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eshetu, A., Mammo, T. & Tilmann, F. Imaging the Ethiopian Rift Region Using Transdimensional Hierarchical Seismic Noise Tomography. Pure Appl. Geophys. 178, 4367–4388 (2021). https://doi.org/10.1007/s00024-021-02880-2

Download citation

Keywords

  • Crustal structure
  • Shear wave velocity
  • Main Ethiopian rift
  • Afar
  • Hierarchical Bayesian
  • Ambient noise tomography