Skip to main content
Log in

A New Thermal Conductivity Estimation Model for Sandstone and Mudstone Based on Their Mineral Composition

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Thermal conductivity is an important physical parameter of rock, which requires indirect estimates. The existing rock thermal conductivity prediction model established from the perspective of particles has certain limitations, and the thermal conductivity calculation of sedimentary rock is not paid enough attention. In this paper, the thermal conductivity of 36 sedimentary samples is tested by the optical scanning method at a temperature of 300 K, and the calculated values from eight commonly used thermal conductivity prediction models with values obtained from laboratory tests are compared. A new mathematical model called the thermal conductivity entropy model (TCEM) is proposed to calculate the thermal conductivity of the rock from its mineral composition. The models for sandstone and mudstone by using thermal conductivity of the individual minerals are optimized, and the deviations between the measured and calculated values are compared. The results show that the values calculated by the eight models are all smaller than the test values, while the relative deviation of sandstone and mudstone are about 10% and 15%, respectively. TCEM provides a good coupling relationship (R2 = 0.54) for low-porosity sandstone. Due to the metamorphism of internal minerals, the thermal conductivity entropy is not linearly related to thermal conductivity. Therefore, the thermal conductivity entropy of minerals is used to predict the thermal conductivity of mudstone by multiple linear fitting (R2 = 0.62). TCEM eliminates the deviation caused by the spatial distribution of mineral particles in the rock in the traditional model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdulagatova, Z. Z., Abdulagatov, I. M., & Emirov, S. N. (2010). Effect of pressure, temperature, and oil saturation on the thermal conductivity of sandstone up to 250 MPa and 520 K. Journal of Petroleum Science and Engineering, 73(1), 141–155.

    Article  Google Scholar 

  • Abdulagatova, Z. Z., Kallaev, S. N., Omarov, Z. M., Bakmaev, A. G., Grigor’Ev, B. A., & Abdulagatov, I. M. (2020). Temperature effect on thermal-diffusivity and heat-capacity and derived values of thermal-conductivity of reservoir rock materials. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6, 1–23.

    Article  Google Scholar 

  • Albert, K., Schulze, M., Franz, C., Koenigsdorff, R., & Zosseder, K. (2017). Thermal conductivity estimation model considering the effect of water saturation explaining the heterogeneity of rock thermal conductivity. Geothermics, 66, 1–12.

    Article  Google Scholar 

  • Andrés, C., Álvarez, R., & Ordóñez, A. (2016). Estimation of thermal conductivity of rocks from their mineralogical composition (Asturian Coal Basin, NW Spain) for modelling purposes. Environmental Earth Sciences, 75(3), 266.

    Article  Google Scholar 

  • Arafin, S. (2019). Thermophysical properties of reservoir rocks. Journal of Physics and Chemistry of Solids, 129, 99–110.

    Article  Google Scholar 

  • Chopra, N., Ray, L., Satyanarayanan, M., & Elangovan, R. (2018). Evaluate best-mixing model for estimating thermal conductivity for granitoids from mineralogy: A case study for the granitoids of the Bundelkhand craton, central India. Geothermics, 75, 1–14.

    Article  Google Scholar 

  • Chu, Z., Zhou, G., Wang, Y., Mo, P., & Tang, R. (2018). Thermal-physical properties of selected geomaterials: Coal, sandstone and concrete based on basic series and parallel models. Environmental Earth Sciences, 77(5), 1–9.

    Article  Google Scholar 

  • Clauser, C., & Huenges, E. (1995). Thermal conductivity of rocks and minerals. In T. J. Ahrens (Ed.), Rock physics and phase relations: A handbook of physical constants, AGU Reference Shelf (pp. 105–126). American Geophysical Union.

    Google Scholar 

  • El Moumen, A., Kanit, T., Imad, A., & El Minor, H. (2015). Computational thermal conductivity in porous materials using homogenization techniques: Numerical and statistical approaches. Computational Materials Science, 97, 148–158.

    Article  Google Scholar 

  • El Sayed, A. M. A. (2011). Thermophysical study of sandstone reservoir rocks. Journal of Petroleum Science and Engineering, 76(3–4), 138–147.

    Article  Google Scholar 

  • El Sayed, A. M. A., & El Sayed, N. A. (2019). Thermal conductivity calculation from P-wave velocity and porosity assessment for sandstone reservoir rocks. Geothermics, 82, 91–96.

    Article  Google Scholar 

  • Fuchs, S., & Foerster, A. (2010). Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin. Chemie Der Erde-Geochemistry, 703, 13–22.

    Article  Google Scholar 

  • Fuchs, S., Foerster, H. J., Braune, K., & Foerster, A. (2018). Calculation of thermal conductivity of low-porous, isotropic plutonic rocks of the crust at ambient conditions from modal mineralogy and porosity: A viable alternative for direct measurement? Journal of Geophysical Research-Solid Earth, 123(10), 8602–8614.

    Article  Google Scholar 

  • Fuchs, S., Schütz, F., Förster, H., & Förster, A. (2013). Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: Correction charts and new conversion equations. Geothermics, 47, 40–52.

    Article  Google Scholar 

  • Gautam, P. K., Verma, A. K., Singh, T. N., Hu, W., & Singh, K. H. (2019). Experimental investigations on the thermal properties of Jalore granitic rocks for nuclear waste repository. Thermochimica Acta, 681, 178381.

    Article  Google Scholar 

  • Gong, L., Wang, Y., Cheng, X., Zhang, R., & Zhang, H. (2013). Thermal conductivity of highly porous mullite materials. International Journal of Heat and Mass Transfer, 67, 253–259.

    Article  Google Scholar 

  • Hartmann, A., Pechnig, R., & Clauser, C. (2008). Petrophysical analysis of regional-scale thermal properties for improved simulations of geothermal installations and basin-scale heat and fluid flow. International Journal of Earth Sciences, 97(2), 421–433.

    Article  Google Scholar 

  • Horai, K., & Simmons, G. (1969). Thermal conductivity of rock-forming minerals. Earth and Planetary Science Letters, 6(5), 359–368.

    Article  Google Scholar 

  • Javed, S., Khan, A., Dong, W., Raza, A., & Liu, S. (2019). Systems evaluation through new trey relational analysis approach: An application on thermal conductivity-petrophysical parameters’ relationships. Processes, 7(6), 348.

    Article  Google Scholar 

  • Jennings, S., Hasterok, D., & Payne, J. (2019). A new compositionally based thermal conductivity model for plutonic rocks. Geophysical Journal International, 219(2), 1377–1394.

    Article  Google Scholar 

  • Kämmlein, M., & Stollhofen, H. (2019). Lithology-specific influence of particle size distribution and mineralogical composition on thermal conductivity measurements of rock fragments. Geothermics, 80, 119–128.

    Article  Google Scholar 

  • Labus, M., & Labus, K. (2018). Thermal conductivity and diffusivity of fine-grained sedimentary rocks. Journal of Thermal Analysis and Calorimetry, 132(3), 1669–1676.

    Article  Google Scholar 

  • Lan, J., & Zeng, Y. (2013). Multi-threshold image segmentation using maximum fuzzy entropy based on a new 2D histogram. Optik, 124(18), 3756–3760.

    Article  Google Scholar 

  • Li, H., Wang, D., Singh, V. P., Wang, Y., Wu, J., Wu, J., et al. (2020). Developing a dual entropy-transinformation criterion for hydrometric network optimization based on information theory and copulas. Environmental Research, 180, 108813.

    Article  Google Scholar 

  • Luo, J., Qiao, Y., Xiang, W., & Rohn, J. (2020). Measurements and analysis of the thermal properties of a sedimentary succession in Yangtze plate in China. Renewable Energy, 147(SI2), 2708–2723.

    Article  Google Scholar 

  • Menard, M., Courboulay, V., & Dardignac, P. A. (2003). Possibilistic and probabilistic fuzzy clustering: Unification within the framework of the non-extensive thermostatistics. Pattern Recognition, 36(6), 1325–1342.

    Article  Google Scholar 

  • Mendes, M. A. A., Ray, S., & Trimis, D. (2013). A simple and efficient method for the evaluation of effective thermal conductivity of open-cell foam-like structures. International Journal of Heat and Mass Transfer, 66, 412–422.

    Article  Google Scholar 

  • Miao, S., & Zhou, Y. (2018). Temperature dependence of thermal diffusivity and conductivity for sandstone and carbonate rocks. Journal of Thermal Analysis and Calorimetry, 131(2), 1647–1652.

    Article  Google Scholar 

  • Nagaraju, P., & Roy, S. (2014). Effect of water saturation on rock thermal conductivity measurements. Tectonophysics, 626, 137–143.

    Article  Google Scholar 

  • Popov, Y., Tertychnyi, V., Romushkevich, R., Korobkov, D., & Pohl, J. (2003). Interrelations between thermal conductivity and other physical properties of rocks: Experimental data. Pure and Applied Geophysics, 160(5), 1137–1161.

    Article  Google Scholar 

  • Pribnow, D., & Umsonst, T. (1993). Estimation of thermal conductivity from the mineral composition: Influence of fabric and anisotropy. Geophysical Research Letters, 20, 2199–2202.

    Article  Google Scholar 

  • Sirdesai, N. N., Mahanta, B., Ranjith, P. G., & Singh, T. N. (2019). Effects of thermal treatment on physico-morphological properties of Indian fine-grained sandstone. Bulletin of Engineering Geology and the Environment, 78(2), 883–897.

    Article  Google Scholar 

  • Sun, Q., Zhang, W., Zhu, Y., & Huang, Z. (2019). Effect of high temperatures on the thermal properties of granite. Rock Mechanics and Rock Engineering, 52(8), 2691–2699.

    Article  Google Scholar 

  • Tamizdoust, M. M., & Ghasemi-Fare, O. (2020). A fully coupled thermo-poro-mechanical finite element analysis to predict the thermal pressurization and thermally induced pore fluid flow in soil media. Computers and Geotechnics, 117, 103250.

    Article  Google Scholar 

  • Tang, B., Zhu, C., Xu, M., Chen, T., & Hu, S. (2018). Thermal conductivity of sedimentary rocks in the Sichuan basin, Southwest China. Energy Exploration & Exploitation, 37(2), 691–720.

    Article  Google Scholar 

  • Wang, J., Carson, J. K., North, M. F., & Cleland, D. J. (2006). A new approach to modelling the effective thermal conductivity of heterogeneous materials. International Journal of Heat and Mass Transfer, 49(17–18), 3075–3083.

    Article  Google Scholar 

  • Wang, M., Xie, W., Huang, K., & Dai, X. (2019). Fine characterization of lithofacies and pore network structure of continental shale: Case study of the Shuinan Formation in the north Jiaolai Basin, China. Journal of Petroleum Science and Engineering, 175, 948–960.

    Article  Google Scholar 

  • Wang, W., Wang, D., Singh, V. P., Wang, Y., Wu, J., Wang, L., et al. (2018). Optimization of rainfall networks using information entropy and temporal variability analysis. Journal of Hydrology, 559, 136–155.

    Article  Google Scholar 

  • Woodside, W., & Messmer, J. (1961a). Thermal conductivity of porous media. I. Uncon-solidated sands. Journal of Applied Physics, 32, 1688–1699.

    Article  Google Scholar 

  • Woodside, W., & Messmer, J. (1961b). Thermal conductivity of porous media. II. Con-solidated rocks. Journal of Applied Physics, 32, 1699–1706.

    Article  Google Scholar 

  • Yang, X., Lu, T., & Kim, T. (2013). Thermal stretching in two-phase porous media: Physical basis for Maxwell model. Theoretical and Applied Mechanics Letters, 3(2), 21011.

    Article  Google Scholar 

  • Zarichnyak, Y. P., Ramazanova, A. E., & Emirov, S. N. (2018). Studying the temperature dependence of thermal conductivity in a rock of combined composition. Bulletin of the Russian Academy of Sciences: Physics, 82(7), 820–821.

    Article  Google Scholar 

  • Zhang, W., Sun, Q., Zhu, Y., & Guo, W. (2019). Experimental study on response characteristics of micro–macroscopic performance of red sandstone after high-temperature treatment. Journal of Thermal Analysis and Calorimetry, 136(5), 1935–1945.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41872170/41572140) and the National Major Science and Technology Projects of China (2016ZX05044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caifang Wu.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or nonfinancial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Mineral Composition and Thermal Conductivity Values of the Samples

Appendix: Mineral Composition and Thermal Conductivity Values of the Samples

Sandstone

Sample

Thermal conductivity (W m−1 k−1)

Quartz (%)

Plagioclase (%)

Calcite (%)

Dolomite (%)

Siderite (%)

Rutile (%)

Clay (%)

Others (%)

Q1929196

2.8951

11.41

38.29

4.40

0.00

0.00

0.00

20.80

25.11

Q1929197

4.3354

29.52

0.00

0.00

9.15

43.63

0.00

17.70

0.00

Q1929201

3.8126

14.16

8.60

0.00

16.21

4.37

5.43

51.22

0.00

Q1929202

3.3597

11.72

4.21

22.58

32.69

4.28

0.00

24.53

0.00

Q1929209

2.9738

7.36

35.26

0.00

8.79

4.22

0.00

44.36

0.00

Q1929211

3.9728

40.44

3.15

2.05

15.83

0.00

3.32

31.65

3.55

Q1929213

3.6175

14.72

0.00

0.00

0.00

40.22

1.53

43.54

0.00

Q1929215

3.1660

22.01

6.52

4.24

15.35

12.52

1.37

38.00

0.00

Q1929219

4.0005

20.69

10.21

9.97

0.00

24.61

1.43

33.08

0.00

Q1929220

3.1700

15.30

11.87

0.00

20.33

10.24

1.36

40.90

0.00

Q1929223

3.0058

15.49

0.00

0.00

0.00

32.70

1.49

50.32

0.00

Q1929225

2.5427

13.71

35.39

8.13

0.00

0.00

0.00

36.43

6.33

Q1929226

3.5723

11.62

29.20

25.46

0.00

0.00

0.00

27.37

6.34

Q1929228

2.6476

16.34

49.38

0.00

0.00

0.00

0.00

34.29

0.00

Q1929229

2.7087

15.37

28.17

3.17

0.00

0.00

0.00

37.92

15.37

Q1929230

4.1490

50.10

6.31

0.00

0.00

7.85

1.99

33.75

0.00

Q1929232

4.0400

36.14

9.44

6.15

12.85

3.56

3.31

28.55

0.00

Q1929233

2.9500

19.47

11.31

0.00

0.00

19.16

5.00

45.06

0.00

Mudstone

Sample

Thermal conductivity (W m−1 k−1)

Quartz (%)

Plagioclase (%)

Siderite (%)

Rutile (%)

Clay (%)

Others (%)

M1929198

1.4927

16.89

5.21

0.00

3.95

73.95

0.00

M1929199

3.9743

11.56

30.07

1.41

1.97

53.43

1.57

M1929200

3.9699

9.55

17.81

2.13

3.31

67.20

0.00

M1929203

3.0160

16.11

13.78

3.59

0.00

57.70

8.82

M1929204

4.0311

24.35

7.31

6.38

0.00

61.96

0.00

M1929205

2.5616

10.61

19.90

2.84

0.00

61.10

5.55

M1929206

2.1393

8.69

0.00

0.00

3.39

78.19

9.73

M1929207

3.2257

14.64

10.32

2.80

0.00

72.24

0.00

M1929208

3.0291

25.63

3.16

5.00

2.66

63.54

0.00

M1929210

3.3495

13.53

8.22

1.39

0.00

76.87

0.00

M1929212

2.4612

13.60

17.55

0.00

2.61

66.24

0.00

M1929216

4.1505

21.72

10.72

5.09

2.03

53.14

7.30

M1929217

2.5908

24.91

7.48

10.15

1.35

56.11

0.00

M1929221

3.0189

15.95

0.00

0.00

13.50

61.20

9.35

M1929222

2.6272

13.16

6.49

0.00

2.73

62.07

15.55

M1929224

3.0539

15.55

5.48

4.46

3.46

58.61

12.44

M1929227

3.9364

25.69

0.00

11.96

5.57

56.79

0.00

M1929231

3.2534

7.09

0.00

20.56

8.84

63.50

0.00

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Wu, C., Fang, X. et al. A New Thermal Conductivity Estimation Model for Sandstone and Mudstone Based on Their Mineral Composition. Pure Appl. Geophys. 178, 3971–3986 (2021). https://doi.org/10.1007/s00024-021-02824-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02824-w

Keywords

Navigation