Skip to main content

Tsunami Modeling in the South American Subduction Zone Inferred from Seismic Coupling and Historical Seismicity

Abstract

Throughout its history, South America has experienced megathrust earthquakes which have produced large tsunamis, devastating coastal cities in the near and far field. Studying these phenomena is important for tsunami hazard mitigation in this region. We propose 10 earthquake scenarios along the South American subduction zone on the basis of the seismic history of each region, seismic-geodetic coupling, general scaling relationships, among others. Tsunami run-up (coastal amplification) is then estimated using 200 nonuniform stochastic sources for each scenario, totaling 2000 simulations. Our results show great variability in run-up distribution along the Nazca-South America subduction zone, with some of the most affected areas being Valparaiso in Chile, with a most likely scenario of 20 m of run-up and a maximum scenario of 33 m; and Lima in Peru, with 25 and 40 m for the most likely and maximum scenarios, respectively. Similar results are seen in Iquique and Huasco in Chile. We have also identified 17 coastal locations with a higher vulnerability due to local amplification of tsunami run-up and two instances in which a regional amplification can occur due to tsunami directivity and coastal barriers. We conclude that tsunami hazard remains high along the coast of South America, even in areas where great earthquakes have recently occurred.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abe, K. (1979). Size of great earthquakes of 1837–1974 inferred from tsunami data. Journal of Geophysical Research: Solid Earth, 84(B4), 1561–1568.

    Article  Google Scholar 

  2. Aranguiz, R., Catalán, P. A., Cecioni, C., Bellotti, G., Henriquez, P., & González, J. (2019). Tsunami resonance and spatial pattern of natural oscillation modes with multiple resonators. Journal of Geophysical Research: Oceans, 124(11), 7797–7816.

    Google Scholar 

  3. Argus, D. F., & Gordon, R. G. (1991). No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophysical Research Letters, 18(11), 2039–2042.

    Article  Google Scholar 

  4. Barrientos, S. E. (1988). Slip distribution of the 1985 central Chile earthquake. Tectonophysics, 145(3–4), 225–241.

    Article  Google Scholar 

  5. Becerra, A., Sáez, E., Podestá, L., & Leyton, F. (2016). The 2014 earthquake in Iquique, Chile: Comparison between local soil conditions and observed damage in the cities of Iquique and Alto Hospicio. Earthquake Spectra, 32(3), 1489–1505.

    Article  Google Scholar 

  6. Becerra, I., Aránguiz, R., González, J., & Benavente, R. (2020). An improvement of tsunami hazard analysis in Central Chile based on stochastic rupture scenarios. Coastal Engineering Journal, 62(4), 473–488.

    Article  Google Scholar 

  7. Beck, S. L., & Nishenko, S. P. (1990). Variations in the mode of great earthquake rupture along the central Peru subduction zone. Geophysical Research Letters, 17(11), 1969–1972.

    Article  Google Scholar 

  8. Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., & Ladner, R. (2009). Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4), 355–371.

    Article  Google Scholar 

  9. Béjar-Pizarro, M., Socquet, A., Armijo, R., Carrizo, D., Genrich, J., & Simons, M. (2013). Andean structural control on interseismic coupling in the North Chile subduction zone. Nature Geoscience, 6(6), 462.

    Article  Google Scholar 

  10. Bilek, S. L., & Ruff, L. J. (2002). Analysis of the 23 June 2001 Mw = 8.4 Peru underthrusting earthquake and its aftershocks. Geophysical Research Letters, 29(20), 21–31.

    Article  Google Scholar 

  11. Blaser, L., Krüger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of the Seismological Society of America, 100(6), 2914–2926.

    Article  Google Scholar 

  12. Bourgeois, J., Petroff, C., Yeh, H., Titov, V., Synolakis, C. E., Benson, B., & Norabuena, E. (1999). Geologie setting, field survey and modeling of the Chimbote, Northern Peru, Tsunami of 21 February 1996. In Seismogenic and tsunamigenic processes in shallow subduction zones (pp. 513–540). Birkhäuser: Basel.

    Chapter  Google Scholar 

  13. Bravo, F., Koch, P., Riquelme, S., Fuentes, M., & Campos, J. (2019). Slip distribution of the 1985 Valparaíso earthquake constrained with seismic and deformation data. Seismological Research Letters, 90, 1792–1800.

    Google Scholar 

  14. Carvajal, M., Cisternas, M., & Catalán, P. A. (2017a). Source of the 1730 Chilean earthquake from historical records: Implications for the future tsunami hazard on the coast of Metropolitan Chile. Journal of Geophysical Research: Solid Earth, 122(5), 3648–3660.

    Google Scholar 

  15. Carvajal, M., Cisternas, M., Gubler, A., Catalán, P. A., Winckler, P., & Wesson, R. L. (2017b). Reexamination of the magnitudes for the 1906 and 1922 Chilean earthquakes using Japanese tsunami amplitudes: Implications for source depth constraints. Journal of Geophysical Research: Solid Earth, 122(1), 4–17.

    Google Scholar 

  16. Catalán, P. A., Aránguiz, R., González, G., Tomita, T., Cienfuegos, R., González, J., & Gubler, A. (2015). The 1 April 2014 Pisagua tsunami: Observations and modeling. Geophysical Research Letters, 42(8), 2918–2925.

    Article  Google Scholar 

  17. Chlieh, M., Perfettini, H., Tavera, H., Avouac, J.-P., Remy, D., Nocquet, J.-M., et al. (2011). Interseismic coupling and seismic potential along the central Andes subduction zone. Journal of Geophysical Research: Solid Earth, 116, B12405.

    Article  Google Scholar 

  18. Cisternas, M., Atwater, B. F., Torrejón, F., Sawai, Y., Machuca, G., Lagos, M., Eipert, A., Youlton, C., Salgado, I., Kamataki, T., Shishikura, M., Rajendran, C. P., Malik, J. K., Rizal, Y., & Husni, M. (2005). Predecessors of the giant 1960 Chile earthquake. Nature, 437(7057), 404–407.

    Article  Google Scholar 

  19. Comte, D., Eisenberg, A., Lorca, E., Pardo, M., Ponce, L., Saragoni, R., & Suárez, G. (1986). The 1985 central Chile earthquake: A repeat of previous great earthquakes in the region? Science, 233(4762), 449–453.

    Article  Google Scholar 

  20. Comte, D., & Pardo, M. (1991). Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Natural Hazards, 4(1), 23–44.

    Article  Google Scholar 

  21. Crempien, J. G. F., Urrutia, A., Benavente, R., & Cienfuegos, R. (2020). Effects of earthquake spatial slip correlation on variability of tsunami potential energy and intensities. Scientific Reports, 10, 8399.

    Article  Google Scholar 

  22. De Risi, R., & Goda, K. (2016). Probabilistic earthquake–tsunami multi-hazard analysis: Application to the Tohoku region, Japan. Frontiers in Built Environment, 2, 25.

    Google Scholar 

  23. Delouis, B., Monfret, T., Dorbath, L., Pardo, M., Rivera, L., Comte, D., & Cisternas, A. (1997). The Mw = 8.0 Antofagasta (northern Chile) earthquake of 30 July 1995: A precursor to the end of the large 1877 gap. Bulletin of the Seismological Society of America, 87(2), 427–445.

    Google Scholar 

  24. Delouis, B., Nocquet, J.-M., & Vallée, M. (2010). Slip distribution of the February 27, 2010 Mw = 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophysical Research Letters, 37, L17305.

    Article  Google Scholar 

  25. Dorbath, L., Cisternas, A., & Dorbath, C. (1990). Assessment of the size of large and great historical earthquakes in Peru. Bulletin of the Seismological Society of America, 80(3), 551–576.

    Google Scholar 

  26. Drápela, J., Calisto, I., & Moreno, M. (2021). Locking-derived tsunami scenarios for the most recent megathrust earthquakes in Chile: Implications for tsunami hazard assessment. Natural Hazards, 107, 35–52.

    Article  Google Scholar 

  27. Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.

    Article  Google Scholar 

  28. Escobar, R. S., Diaz, L. O., Guerrero, A. M., Galindo, M. P., Mas, E., Koshimura, S., & Quintero, P. (2020). Tsunami hazard assessment for the central and southern pacific coast of Colombia. Coastal Engineering Journal, 62(4), 540–552.

    Article  Google Scholar 

  29. Fuentes, M. S., Riquelme Muñoz, S., Medina, M., Mocanu, M., & Filippi Fernandez, R. (2019). Tsunami hazard evaluation in the Coquimbo region using nonuniform slip distribution sources. Seismological Research Letters, 90, 1812–1819.

    Google Scholar 

  30. Fuentes, M., Riquelme, S., Hayes, G., Medina, M., Melgar, D., Vargas, G., et al. (2016). A study of the 2015 Mw 8.3 Illapel earthquake and tsunami: Numerical and analytical approaches. Pure Applied Geophysics, 173, 1847–1858.

    Article  Google Scholar 

  31. Fuentes, M. A., Ruiz, J. A., & Riquelme, S. (2015). The runup on a multilinear sloping beach model. Geophysical Journal International, 201(2), 915–928.

    Article  Google Scholar 

  32. Geist, E. L. (2002). Complex earthquake rupture and local tsunamis. Journal of Geophysical Research: Solid Earth, 107(B5), ESE-2.

    Article  Google Scholar 

  33. Geist, E. L., & Dmowska, R. (1999). Local tsunamis and distributed slip at the source. In J. Sauber & R. Dmowska (Eds.), Seismogenic and tsunamigenic processes in shallow subduction zones. Pageoph Topical Volumes. Basel: Birkhäuser.

    Google Scholar 

  34. Geist, E. L., & Parsons, T. (2006). Probabilistic analysis of tsunami hazards. Natural Hazards, 37(3), 277–314.

    Article  Google Scholar 

  35. Goff, J., Witter, R., Terry, J., & Spiske, M. (2020). Palaeotsunamis in the Sino-Pacific region. Earth-Science Reviews, 210, 103352.

    Article  Google Scholar 

  36. González, J., González, G., Aránguiz, R., Melgar, D., Zamora, N., Shrivastava, M. N., & Cienfuegos, R. (2020). A hybrid deterministic and stochastic approach for tsunami hazard assessment in Iquique, Chile. Natural Hazards, 100(1), 231–254.

    Article  Google Scholar 

  37. Graves, R. W., & Pitarka, A. (2010). Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America, 100(5A), 2095–2123.

    Article  Google Scholar 

  38. Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185–188.

    Article  Google Scholar 

  39. Hayes, G. P., Herman, M. W., Barnhart, W. D., Furlong, K. P., Riquelme, S., Benz, H. M., & Samsonov, S. (2014). Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature, 512(7514), 295.

    Article  Google Scholar 

  40. Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61.

    Article  Google Scholar 

  41. Herrero, A., & Bernard, P. (1994). A kinematic self-similar rupture process for earthquakes. Bulletin of the Seismological Society of America, 84(4), 1216–1228.

    Google Scholar 

  42. Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981–2987.

    Article  Google Scholar 

  43. Kanamori, H., & Cipar, J. J. (1974). Focal process of the great Chilean earthquake May 22, 1960. Physics of the Earth and Planetary Interiors, 9(2), 128–136.

    Article  Google Scholar 

  44. Kanamori, H., & McNally, K. C. (1982). Variable rupture mode of the subduction zone along the Ecuador–Colombia coast. Bulletin of the Seismological Society of America, 72(4), 1241–1253.

    Google Scholar 

  45. Kendrick, E. C., Bevis, M., Smalley, R. F., Jr., Cifuentes, O., & Galban, F. (1999). Current rates of convergence across the central Andes: Estimates from continuous GPS observations. Geophysical Research Letters, 26(5), 541–544.

    Article  Google Scholar 

  46. Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., et al. (2012). Depth-varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research: Solid Earth, 117, B04311.

    Article  Google Scholar 

  47. Lomnitz, C. (2004). Major earthquakes of Chile: A historical survey, 1535–1960. Seismological Research Letters, 75(3), 368–378.

    Article  Google Scholar 

  48. Mai, P. M., & Beroza, G. C. (2002). A spatial random field model to characterize complexity in earthquake slip. Journal of Geophysical Research: Solid Earth, 107(B11), ESE-10.

    Article  Google Scholar 

  49. Mas, E., Adriano, B., Pulido, N., Jimenez, C., & Koshimura, S. (2014). Simulation of tsunami inundation in Central Peru from future megathrust earthquake scenarios. Journal of Disaster Research, 9(6), 961–967.

    Article  Google Scholar 

  50. McCann, W. R., Nishenko, S. P., Sykes, L. R., & Krause, J. (1979). Seismic gaps and plate tectonics: Seismic potential for major boundaries. In M. Wyss (Ed.), Earthquake prediction and seismicity patterns. Contributions to Current Research in Geophysics. Basel: Birkhäuser.

    Google Scholar 

  51. Melgar, D., & Hayes, G. P. (2019). The correlation lengths and hypocentral positions of great earthquakes. Bulletin of the Seismological Society of America, 109(6), 2582–2593.

    Article  Google Scholar 

  52. Métois, M., Socquet, A., & Vigny, C. (2012). Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. Journal of Geophysical Research: Solid Earth, 117, B03406.

    Article  Google Scholar 

  53. Métois, M., Socquet, A., Vigny, C., Carrizo, D., Peyrat, S., Delorme, A., & Ortega, I. (2013). Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophysical Journal International, 194(3), 1283–1294.

    Article  Google Scholar 

  54. Métois, M., Vigny, C., & Socquet, A. (2016). Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38–18 S). Pure and Applied Geophysics, 173(5), 1431–1449.

    Article  Google Scholar 

  55. Moreno, M. S., Bolte, J., Klotz, J., & Melnick, D. (2009). Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake. Geophysical Research Letters, 36, L16310.

    Article  Google Scholar 

  56. Mothes, P. A., Rolandone, F., Nocquet, J. M., Jarrin, P. A., Alvarado, A. P., Ruiz, M. C., & Segovia, M. (2018). Monitoring the earthquake cycle in the northern Andes from the Ecuadorian cGPS network. Seismological Research Letters, 89(2A), 534–541.

    Article  Google Scholar 

  57. Nocquet, J. M., Jarrin, P., Vallée, M., Mothes, P. A., Grandin, R., Rolandone, F., & Régnier, M. (2017). Supercycle at the Ecuadorian subduction zone revealed after the 2016 Pedernales earthquake. Nature Geoscience, 10(2), 145.

    Article  Google Scholar 

  58. Nocquet, J. M., Villegas-Lanza, J. C., Chlieh, M., Mothes, P. A., Rolandone, F., Jarrin, P., & Martin, X. (2014). Motion of continental slivers and creeping subduction in the northern Andes. Nature Geoscience, 7(4), 287.

    Article  Google Scholar 

  59. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Article  Google Scholar 

  60. Okal, E. A. (1988). Seismic parameters controlling far-field tsunami amplitudes: A review. Natural Hazards, 1(1), 67–96.

    Article  Google Scholar 

  61. Okal, E. A., Borrero, J. C., & Synolakis, C. E. (2006). Evaluation of tsunami risk from regional earthquakes at Pisco, Peru. Bulletin of the Seismological Society of America, 96(5), 1634–1648.

    Article  Google Scholar 

  62. Pacheco, J. F., Sykes, L. R., & Scholz, C. H. (1993). Nature of seismic coupling along simple plate boundaries of the subduction type. Journal of Geophysical Research: Solid Earth, 98(B8), 14133–14159.

    Article  Google Scholar 

  63. Pelayo, A. M., & Wiens, D. A. (1990). The November 20, 1960 Peru tsunami earthquake: Source mechanism of a slow event. Geophysical Research Letters, 17(6), 661–664.

    Article  Google Scholar 

  64. Ruiz, J. A., Fuentes, M., Riquelme, S., Campos, J., & Cisternas, A. (2015). Numerical simulation of tsunami runup in northern Chile based on non-uniform k-2 slip distributions. Natural Hazards, 79(2), 1177–1198.

    Article  Google Scholar 

  65. Ruiz, S., Klein, E., del Campo, F., Rivera, E., Poli, P., Metois, M., & Madariaga, R. (2016). The seismic sequence of the 16 September 2015 M w 8.3 Illapel, Chile, earthquake. Seismological Research Letters, 87(4), 789–799.

    Article  Google Scholar 

  66. Saillard, M., Audin, L., Rousset, B., Avouac, J. P., Chlieh, M., Hall, S. R., & Farber, D. L. (2017). From the seismic cycle to long-term deformation: Linking seismic coupling and Quaternary coastal geomorphology along the Andean megathrust. Tectonics, 36(2), 241–256.

    Article  Google Scholar 

  67. Scholz, C. H., & Campos, J. (1995). On the mechanism of seismic decoupling and back arc spreading at subduction zones. Journal of Geophysical Research: Solid Earth, 100(B11), 22103–22115.

    Article  Google Scholar 

  68. Scholz, C. H., & Campos, J. (2012). The seismic coupling of subduction zones revisited. Journal of Geophysical Research: Solid Earth, 117, B05310.

    Article  Google Scholar 

  69. Sieh, K., Natawidjaja, D. H., Meltzner, A. J., Shen, C. C., Cheng, H., Li, K. S., & Edwards, R. L. (2008). Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra. Science, 322(5908), 1674–1678.

    Article  Google Scholar 

  70. Sladen, A., Tavera, H., Simons, M., Avouac, J. P., Konca, A. O., Perfettini, H., et al. (2010). Source model of the 2007 Mw 8.0 Pisco, Peru earthquake: Implications for seismogenic behavior of subduction megathrusts. Journal of Geophysical Research: Solid Earth, 115, B02405.

    Article  Google Scholar 

  71. Spiske, M., Piepenbreier, J., Benavente, C., Kunz, A., Bahlburg, H., & Steffahn, J. (2013). Historical tsunami deposits in Peru: Sedimentology, inverse modeling and optically stimulated luminescence dating. Quaternary International, 305, 31–44.

    Article  Google Scholar 

  72. Strasser, F. O., Arango, M. C., & Bommer, J. J. (2010). Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismological Research Letters, 81(6), 941–950.

    Article  Google Scholar 

  73. Tichelaar, B. W., & Ruff, L. J. (1993). Depth of seismic coupling along subduction zones. Journal of Geophysical Research: Solid Earth, 98(B2), 2017–2037.

    Article  Google Scholar 

  74. Trenkamp, R., Kellogg, J. N., Freymueller, J. T., & Mora, H. P. (2002). Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. Journal of South American Earth Sciences, 15(2), 157–171.

    Article  Google Scholar 

  75. Udías, A., Madariaga, R., Buforn, E., Muñoz, D., & Ros, M. (2012). The large Chilean historical earthquakes of 1647, 1657, 1730, and 1751 from contemporary documents. Bulletin of the Seismological Society of America, 102(4), 1639–1653.

    Article  Google Scholar 

  76. Vargas, C. A., Caneva, A., Monsalve, H., Salcedo, E., & Mora, H. (2018). Geophysical networks in Colombia. Seismological Research Letters, 89(2A), 440–445.

    Article  Google Scholar 

  77. Vigny, C., Rudloff, A., Ruegg, J. C., Madariaga, R., Campos, J., & Alvarez, M. (2009). Upper plate deformation measured by GPS in the Coquimbo Gap, Chile. Physics of the Earth and Planetary Interiors, 175(1–2), 86–95.

    Article  Google Scholar 

  78. Vigny, C., Socquet, A., Peyrat, S., Ruegg, J. C., Métois, M., Madariaga, R., & Carrizo, D. (2011). The 2010 Mw 8.8 Maule megathrust earthquake of central Chile, monitored by GPS. Science, 332(6036), 1417–1421.

    Article  Google Scholar 

  79. Villegas-Lanza, J. C., Chlieh, M., Cavalié, O., Tavera, H., Baby, P., Chire-Chira, J., & Nocquet, J. M. (2016a). Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation. Journal of Geophysical Research: Solid Earth, 121(10), 7371–7394.

    Google Scholar 

  80. Villegas-Lanza, J. C., Nocquet, J. M., Rolandone, F., Vallée, M., Tavera, H., Bondoux, F., & Chlieh, M. (2016b). A mixed seismic–aseismic stress release episode in the Andean subduction zone. Nature Geoscience, 9(2), 150–154.

    Article  Google Scholar 

  81. Williamson, A., Rim, D., Adams, L., LeVeque, R. J., Melgar, D., & Gonzalez, F. (2020). A source clustering approach for efficient inundation modeling and regional scale PTHA

  82. Yamazaki, Y., & Cheung, K. F. (2011). Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake. Geophysical Research Letters, 38, L12605.

    Google Scholar 

  83. Yamazaki, Y., Kowalik, Z., & Cheung, K. F. (2009). Depth-integrated, non-hydrostatic model for wave breaking and run-up. International Journal for Numerical Methods in Fluids, 61(5), 473–497.

    Article  Google Scholar 

  84. Ye, L., Kanamori, H., Avouac, J. P., Li, L., Cheung, K. F., & Lay, T. (2016). The 16 April 2016, MW 7.8 (MS 7.5) Ecuador earthquake: A quasi-repeat of the 1942 MS 7.5 earthquake and partial re-rupture of the 1906 MS 8.6 Colombia-Ecuador earthquake. Earth and Planetary Science Letters, 454, 248–258.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fondecyt 1170218.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mauricio Fuentes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Grid

Grids for numerical simulations are constructed according to the Slab 2.0 model (Hayes et al., 2018). The following Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 show the domains and source area for each scenario. Profiles A through D show agreement from north to south of the constructed grid.

Fig. 8
figure8

Central Perú scenario. White rectangle depicts the deformation area

Fig. 9
figure9

North-Central Chile scenario. White rectangle depicts the deformation area

Fig. 10
figure10

Norther Chile (Up) scenario. White rectangle depicts the deformation area

Fig. 11
figure11

Colombia scenario. White rectangle depicts the deformation area

Fig. 12
figure12

Southern Perú scenario. White rectangle depicts the deformation area

Fig. 13
figure13

Ecuador–Colombia scenario. White rectangle depicts the deformation area

Fig. 14
figure14

Northern Perú scenario. White rectangle depicts the deformation area

Fig. 15
figure15

Central Chile scenario. White rectangle depicts the deformation area

Fig. 16
figure16

Northern Chile scenario. White rectangle depicts the deformation area

Fig. 17
figure17

Northern Chile (Down) scenario. White rectangle depicts the deformation area

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Medina, M., Riquelme, S., Fuentes, M. et al. Tsunami Modeling in the South American Subduction Zone Inferred from Seismic Coupling and Historical Seismicity. Pure Appl. Geophys. (2021). https://doi.org/10.1007/s00024-021-02808-w

Download citation

Keywords

  • Tsunami
  • South America
  • seismology