Skip to main content

Earthquake Diffusion Variations in the Western Gulf of Corinth (Greece)

Abstract

Earthquake diffusion and the migration behaviour of seismic clusters are commonly studied to provide insight on the spatiotemporal evolution of seismicity and the interplaying driving mechanisms. Using a high-resolution relocated catalogue, we study the variations of the earthquake diffusion rates in the Western Gulf of Corinth during 2013–2014, a period with abundant local seismicity, including intense microseismic background, seismic swarms and mainshock-aftershock sequences. We treat earthquake occurrence as a point process in time and space and estimate the diffusion rates of the main seismic sequences and the background seismicity in terms of normalized spatial histograms and the evolutions of the mean squared distance of seismicity with time. The statistical analysis of the studied seismic sequences reveals that the mean squared distance of the hypocentres increases slowly with time, at a much lower rate than for a normal diffusion process. Such findings confirm previous results on weak earthquake diffusion, analogous to subdiffusion, in regional and clustered seismicity. In addition, seismic swarms associated with pore fluid pressure diffusion present considerably higher diffusion exponents compared to mainshock-aftershock-type sequences that are consistent with primary or secondary stress triggering effects and stress corrosion. The observed variations of the earthquake diffusion rates indicate the stochastic nature of the phenomenon and may provide novel constraints on the triggering mechanisms of clustered seismic activity in the Western Gulf of Corinth and in other seismically active regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The relocated earthquake catalogue dataset used in this study is available in Mendeley Data at http://dx.doi.org/10.17632/d6txydfpty.1.

Code availability

All codes used for the relocation scheme are freely available from the online sources cited in the text.

References

  1. Berkowitz, B., Cortis, A., Dentz, M., & Scher, H. (2006). Modeling non-Fickian transport in geological formations as a continuous time random walk. Reviews of Geophysics, 44, RG2003. https://doi.org/10.1029/2005RG000178

    Article  Google Scholar 

  2. Bernard, P., Lyon-Caen, H., Briole, P., Deschamps, A., Boudin, F., Makropoulos, K., Papadimitriou, P., Lemeille, F., Patau, G., Billiris, H., Paradissis, D., Papazissi, K., Castarède, H., Charade, O., Nercessian, A., Avallone, A., Pacchiani, F., Zahradnik, J., Sacks, S., & Linde, A. (2006). Seismicity, deformation and seismic hazard in the western rift of Corinth: New insights from the Corinth Rift Laboratory (CRL). Tectonophysics, 426, 7–30. https://doi.org/10.1016/j.tecto.2006.02.012

    Article  Google Scholar 

  3. Bourouis, S., & Bernard, P. (2007). Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients. Geophysical Journal International, 169(2), 723–732. https://doi.org/10.1111/j.1365-246X.2006.03325.x

    Article  Google Scholar 

  4. Bourouis, S., & Cornet, F. H. (2009). Microseismic activity and fluid fault interactions: some results from the Corinth Rift Laboratory (CRL), Greece. Geophysical Journal International, 178, 561–580. https://doi.org/10.1111/j.1365-246X.2009.04148.x

    Article  Google Scholar 

  5. Chen, X., Shearer, P. M., & Abercrombie, R. E. (2012). Spatial migration of earthquakes within seismic clusters in Southern California: Evidence for fluid diffusion. Journal of Geophysical Research: Solid Earth, 117, B04301. https://doi.org/10.1029/2011JB008973

    Article  Google Scholar 

  6. Corral, A. (2004). Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes. Physical Review Letters, 92(10), 108501. https://doi.org/10.1103/PhysRevLett.92.108501

    Article  Google Scholar 

  7. Das, S., & Scholz, C. H. (1981). Theory of time-dependent rupture in the Earth. Journal of Geophysical Research, 86, 6039–6051.

    Article  Google Scholar 

  8. De Barros, L., Cappa, F., Deschamps, A., & Dublanchet, P. (2020). Imbricated aseismic slip and fluid diffusion drive a seismic swarm in the Corinth Gulf. Greece. Geophysical Research Letters, 47, e2020GL087142. https://doi.org/10.1029/2020GL087142

    Article  Google Scholar 

  9. Dieterich, J. (1994). A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical Research, 99, 2601–2618.

    Article  Google Scholar 

  10. Dublanchet, P., Godano, M., & Bernard, P. (2015). Inferring fault mechanical conditions from the source parameters of a complex microseismic multiplet in the Corinth rift, Greece. Journal of Geophysical Research: Solid Earth, 120(11), 7655–7682. https://doi.org/10.1002/2015JB012259

    Article  Google Scholar 

  11. Duverger, C., Godano, M., Bernard, P., Lyon-Caen, H., & Lambotte, S. (2015). The 2003–2004 seismic swarm in the western Corinth rift: Evidence for a multiscale pore pressure diffusion process along a permeable fault system. Geophysical Research Letters, 42(18), 7374–7382. https://doi.org/10.1002/2015GL065298

    Article  Google Scholar 

  12. Duverger, C., Lambotte, S., Bernard, P., Lyon-Caen, H., Deschamps, A., & Nercessian, A. (2018). Dynamics of microseismicity and its relationship with the active structures in the western Corinth Rift (Greece). Geophysical Journal International, 215(1), 196–221. https://doi.org/10.1093/gji/ggy264

    Article  Google Scholar 

  13. Evangelidis, C. P., Triantafyllis, N., Samios, M., Boukouras, K., Kontakos, K., Ktenidou, O.-J., Fountoulakis, I., Kalogeras, I., Melis, N. S., Galanis, O., Papazachos, C. B., Hatzidimitriou, P., Scordilis, E., Sokos, E., Paraskevopoulos, P., Serpetsidaki, A., Kaviris, G., Kapetanidis, V., Papadimitriou, P., … Kassaras, I. (2021). Seismic waveform data from Greece and Cyprus: Integration, archival, and open access. Seismological Research Letters, 92, 1672–1684. https://doi.org/10.1785/0220200408

    Article  Google Scholar 

  14. Ganas, A., Chousianitis, K., Batsi, E., Kolligri, M., Agalos, A., Chouliaras, G., & Makropoulos, K. (2013). The January 2010 Efpalion earthquakes (Gulf of Corinth, Central Greece): Earthquake interactions and blind normal faulting. Journal of Seismology, 17, 465–484. https://doi.org/10.1007/s10950-012-9331-6

    Article  Google Scholar 

  15. Godano, M., Bernard, P., & Dublanchet, P. (2015). Bayesian inversion of seismic spectral ratio for source scaling: Application to a persistent multiplet in the western Corinth rift. Journal of Geophysical Research: Solid Earth, 120(11), 7683–7712. https://doi.org/10.1002/2015JB012217

    Article  Google Scholar 

  16. Guglielmi, Y., Cappa, F., Avouac, J. P., Henry, P., & Elsworth, D. (2015). Seismicity triggered by fluid injection–induced aseismic slip. Science, 348(6240), 1224–1226. https://doi.org/10.1126/science.aab0476

    Article  Google Scholar 

  17. Helmstetter, A., & Sornette, D. (2002). Diffusion of epicenters of earthquake aftershocks, Omori’s law, and generalized continuous-time random walk models. Physical Review E, 66(6), 061104. https://doi.org/10.1103/PhysRevE.66.061104

    Article  Google Scholar 

  18. Helmstetter, A., Ouillon, G., & Sornette, D. (2003). Are aftershocks of large California earthquakes diffusing? Journal of Geophysical Research: Solid Earth, 108, 2483. https://doi.org/10.1029/2003JB002503

    Article  Google Scholar 

  19. Huc, M., & Main, I. G. (2003). Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality. Journal of Geophysical Research: Solid Earth, 108, 2324. https://doi.org/10.1029/2001JB001645

    Article  Google Scholar 

  20. Kapetanidis, V. (2017). Spatiotemporal patterns of microseismicity for the identification of active fault structures using seismic waveform cross-correlation and double-difference relocation. PhD thesis, University of Athens, Greece.

  21. Kapetanidis, V., & Papadimitriou, P. (2011). Estimation of arrival-times in intense seismic sequences using a Master-Events methodology based on waveform similarity. Geophysical Journnal International, 187, 889–917. https://doi.org/10.1111/j.1365-246X.2011.05178.x

    Article  Google Scholar 

  22. Kapetanidis, V., Deschamps, A., Papadimitriou, P., Matrullo, E., Karakonstantis, A., Bozionelos, G., Kaviris, G., Serpetsidaki, A., Lyon-Caen, H., Voulgaris, N., Bernard, P., Sokos, E., & Makropoulos, K. (2015). The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults. Geophysical Journal International, 202(3), 2044–2073. https://doi.org/10.1093/gji/ggv249

    Article  Google Scholar 

  23. Kapetanidis, V., Karakonstantis, A., Papadimitriou, P., Pavlou, K., Spingos, I., Kaviris, G., & Voulgaris, N. (2020). The 19 July 2019 earthquake in Athens, Greece: A delayed major aftershock of the 1999 Mw = 6.0 event, or the activation of a different structure? Journal of Geodynamics, 139, 101766. https://doi.org/10.1016/j.jog.2020.101766

    Article  Google Scholar 

  24. Karakostas, V., Karagianni, E., & Paradisopoulou, P. (2012). Space–time analysis, faulting and triggering of the 2010 earthquake doublet in western Corinth Gulf. Natural Hazards, 63, 1181–1202. https://doi.org/10.1007/s11069-012-0219-0

    Article  Google Scholar 

  25. Kaviris, G., Spingos, I., Kapetanidis, V., Papadimitriou, P., Voulgaris, N., & Makropoulos, K. (2017). Upper crust seismic anisotropy study and temporal variations of shear-wave splitting parameters in the Western Gulf of Corinth (Greece) during 2013. Physics of the Earth and Planetary Interiors, 269, 148–164. https://doi.org/10.1016/j.pepi.2017.06.006

    Article  Google Scholar 

  26. Kaviris, G., Millas, C., Spingos, I., Kapetanidis, V., Fountoulakis, I., Papadimitriou, P., Voulgaris, N., & Makropoulos, K. (2018). Observations of shear-wave splitting parameters in the Western Gulf of Corinth focusing on the 2014 Mw = 5.0 earthquake. Physics of the Earth and Planetary Interiors, 282, 60–76. https://doi.org/10.1016/j.pepi.2018.07.005

    Article  Google Scholar 

  27. Kaviris, G., Spingos, I., Karakostas, V., Papadimitriou, E., & Tsapanos, T. (2020). Shear-wave splitting properties of the upper crust in the CO2-rich field of Florina Basin, Greece. Physics of the Earth and Planetary Interiors, 303, 106503. https://doi.org/10.1016/j.pepi.2020.106503

    Article  Google Scholar 

  28. Klein, F. W. (2002). User’s guide to HYPOINVERSE-2000: a Fortran program to solve for earthquake locations and magnitudes. Open File Report 2002–171, 1–123, U.S. Geological Survey. https://doi.org/10.3133/ofr02171

  29. Lohman, R. B., & McGuire, J. J. (2007). Earthquake swarms driven by aseismic creep in the Salton Trough, California. Journal of Geophysical Research: Solid Earth, 112, B04405. https://doi.org/10.1029/2006JB004596

    Article  Google Scholar 

  30. Lyon-Caen, H., Papadimitriou, P., Deschamps, A., Bernard, P., Makropoulos, K., Pacchiani, F., & Patau, G. (2004). First results of the CRLN seismic network in the western Corinth Rift: Evidence for old-fault reactivation. Comptes Rendus Geoscience, 336, 343–351. https://doi.org/10.1016/j.crte.2003.12.004

    Article  Google Scholar 

  31. Marsan, D., & Bean, C. J. (2003). Seismicity response to stress perturbations, analysed for a world-wide catalogue. Geophysical Journal International, 154(1), 179–195. https://doi.org/10.1046/j.1365-246X.2003.01963.x

    Article  Google Scholar 

  32. Marsan, D., & Lengliné, O. (2008). Extending earthquakes' reach through cascading. Science, 319, 1076–1079. https://doi.org/10.1126/science.1148783

  33. Marsan, D., Bean, C. J., Steacy, S., & McCloskey, J. (1999). Spatio-temporal analysis of stress diffusion in a mining-induced seismicity system. Geophysical Research Letters, 26(24), 3697–3700. https://doi.org/10.1029/1999GL010829

    Article  Google Scholar 

  34. Marsan, D., Bean, C. J., Steacy, S., & McCloskey, J. (2000). Observation of diffusion processes in earthquake populations and implications for the predictability of seismicity systems. Journal of Geophysical Research: Solid Earth, 105, 28081–28094. https://doi.org/10.1029/2000JB900232

    Article  Google Scholar 

  35. McKernon, C., & Main, I. G. (2005). Regional variations in the diffusion of triggered seismicity. Journal of Geophysical Research: Solid Earth, 110, B05S05. https://doi.org/10.1029/2004JB003387

    Article  Google Scholar 

  36. Mesimeri, M., Karakostas, V., Papadimitriou, E., Schaff, D., & Tsaklidis, G. (2016). Spatio-temporal properties and evolution of the 2013 Aigion earthquake swarm (Corinth Gulf, Greece). Journal of Seismology, 20, 595–614. https://doi.org/10.1007/s10950-015-9546-4

    Article  Google Scholar 

  37. Mesimeri, M., Karakostas, V., Papadimitriou, E., Tsaklidis, G., & Tsapanos, T. (2017). Detailed microseismicity study in the area of Florina (Greece): evidence for fluid driven seismicity. Tectonophysics, 694, 424–435. https://doi.org/10.1016/j.tecto.2016.11.027

    Article  Google Scholar 

  38. Mesimeri, M., Karakostas, V., Papadimitriou, E., & Tsaklidis, G. (2019). Characteristics of earthquake clusters: Application to western Corinth Gulf (Greece). Tectonophysics, 767, 228160. https://doi.org/10.1016/j.tecto.2019.228160

    Article  Google Scholar 

  39. Metzler, R., & Klafter, J. (2000). The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports, 339, 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3

    Article  Google Scholar 

  40. Michas, G. (2016). Generalized statistical mechanics description of fault and earthquake populations in Corinth rift (Greece). PhD thesis, University College London, UK.

  41. Michas, G., & Vallianatos, F. (2018a). Modelling earthquake diffusion as a continuous-time random walk with fractional kinetics: the case of the 2001 Agios Ioannis earthquake swarm (Corinth Rift). Geophysical Journal International, 215, 333–345. https://doi.org/10.1093/gji/ggy282

    Article  Google Scholar 

  42. Michas, G., & Vallianatos, F. (2018b). Stochastic modeling of nonstationary earthquake time series with long-term clustering effects. Physical Review E, 98(4), 042107. https://doi.org/10.1103/PhysRevE.98.042107

    Article  Google Scholar 

  43. Michas, G., & Vallianatos, F. (2020). Scaling properties and anomalous diffusion of the Florina micro-seismic activity: Fluid driven? Geomechanics for Energy and the Environment, 24, 100155. https://doi.org/10.1016/j.gete.2019.100155

    Article  Google Scholar 

  44. Michas, G., & Vallianatos, F. (2021). Scaling properties, multifractality and range of correlations in earthquake timeseries: Are earthquakes random? In N. Limnios, E. Papadimitriou, & G. Tsaklidis (Eds.), Statistical Methods and Modeling of Seismogenesis.London, UK: ISTE John Wiley.

    Google Scholar 

  45. Michas, G., Vallianatos, F., & Sammonds, P. (2013). Non-extensivity and long-range correlations in the earthquake activity at the West Corinth rift (Greece). Nonlinear Processes in Geophysics, 20, 713–724. https://doi.org/10.5194/npg-20-713-2013

    Article  Google Scholar 

  46. Pacchiani, F., & Lyon-Caen, H. (2010). Geometry and spatio-temporal evolution of the 2001 Agios Ioanis earthquake swarm (Corinth Rift, Greece). Geophysical Journal International, 180, 59–72. https://doi.org/10.1111/j.1365-246X.2009.04409.x

    Article  Google Scholar 

  47. Papadimitriou, P., Kassaras, I., Kaviris, G., Tselentis, G., Voulgaris, N., Lekkas, E., Chouliaras, G., Evangelidis, C., Pavlou, K., Kapetanidis, V., Karakonstantis, A., Kazantzidou-Firtinidou, D., Fountoulakis, I., Millas, C., Spingos, I., Aspiotis, T., Moumoulidou, A., Skourtsos, E., Antoniou, V., … Kleanthi, M. (2018). The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations. Journal of Geodynamics, 115, 23–42. https://doi.org/10.1016/j.jog.2018.01.009

    Article  Google Scholar 

  48. Reasenberg, P. (1985). Second-order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth, 90, 5479–5495. https://doi.org/10.1029/JB090iB07p05479

    Article  Google Scholar 

  49. Rigo, A., Lyon-Caen, H., Armijo, R., Deschamps, A., Hatzfeld, D., Makropoulos, K., Papadimitriou, E., & Kassaras, I. (1996). A microseismic study in the western part of the gulf of Corinth (Greece) implication for large-scale normal faulting mecanisms. Geophysical Journal International, 126, 663–688. https://doi.org/10.1111/j.1365-246X.1996.tb04697.x

    Article  Google Scholar 

  50. Roland, E., & McGuire, J. J. (2009). Earthquake swarms on transform faults. Geophysical Journal International, 178(3), 1677–1690. https://doi.org/10.1111/j.1365-246X.2009.04214.x

    Article  Google Scholar 

  51. Sotolongo-Costa, O., Antoranz, J. C., Posadas, A., Vidal, F., & Vazquez, A. (2000). Lévy flights and earthquakes. Geophysical Research Letters, 27(13), 1965–1968. https://doi.org/10.1029/2000GL011394

    Article  Google Scholar 

  52. Tajima, F., & Kanamori, H. (1985). Global survey of aftershock area expansion patterns. Physics of the Earth and Planetary Interiors, 40, 77–134. https://doi.org/10.1016/0031-9201(85)90066-4

    Article  Google Scholar 

  53. Toda, S., Stein, R. S., & Sagiya, T. (2002). Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity. Nature, 419, 58–61. https://doi.org/10.1038/nature00997

    Article  Google Scholar 

  54. Vidale, J. E., & Shearer, P. M. (2006). A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. Journal of Geophysical Research: Solid Earth, 111, B05312. https://doi.org/10.1029/2005JB004034

    Article  Google Scholar 

  55. Waldhauser, F. (2001). hypoDD-A Program to Compute Double-Difference Hypocenter Locations. Open File Report 2001–113, 25 p., U.S. Geological Survey. https://doi.org/10.3133/ofr01113

  56. Waldhauser, F., & Ellsworth, W. L. (2000). A Double-difference Earthquake location algorithm: Method and application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90, 1353–1368. https://doi.org/10.1785/0120000006

    Article  Google Scholar 

  57. Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244. https://doi.org/10.1080/01621459.1963.10500845

    Article  Google Scholar 

  58. Zhu, W., Allison, K. L., Dunham, E. M., & Yang, Y. (2020). Fault valving and pore pressure evolution in simulations of earthquake sequences and aseismic slip. Nature Communications, 11, 4833. https://doi.org/10.1038/s41467-020-18598-z

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Ian Main, an anonymous reviewer and the editor, Zordi Julià, for their constructive comments that helped to improve the quality of this work. We would also like to thank the personnel of the Hellenic Unified Seismological Network (http://eida.gein.noa.gr/; Evangelidis et al., 2021) and the Corinth Rift Laboratory Network (https://doi.org/10.15778/RESIF.CL) for the installation and operation of the stations used in the current article. This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning 2014–2020» in the context of the project “The role of fluids in the seismicity of the Western Gulf of Corinth (Greece)” (MIS 5048127).

Funding

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning 2014–2020» in the context of the project “The role of fluids in the seismicity of the Western Gulf of Corinth (Greece)” (MIS 5048127).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Georgios Michas.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3176 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Michas, G., Kapetanidis, V., Kaviris, G. et al. Earthquake Diffusion Variations in the Western Gulf of Corinth (Greece). Pure Appl. Geophys. 178, 2855–2870 (2021). https://doi.org/10.1007/s00024-021-02769-0

Download citation

Keywords

  • Statistical seismology
  • seismic clusters
  • relocated seismicity
  • earthquake migration
  • anomalous diffusion
  • West Gulf of Corinth