Skip to main content
Log in

Displacements Before and After Great Earthquakes: Geodetic and Seismic Viewpoints

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Analysis of geodetic data obtained by the global positioning system (GPS) leads to better understanding of earthquake origins and helps to interpret their sequences. For this, we cross-compare the pre- and postseismic displacements associated with great earthquakes and derived from GPS observations and seismic catalogs. In a pilot study of the 2004 Sumatra–Andaman Mw9.2 earthquake in the Indian Ocean, the 2011 Tohoku Mw9.1 earthquake in Japan, the 2010 offshore Maule Mw8.8 and the 2015 Illapel Mw8.3 earthquakes in Chile, the 2018 Kodiak Mw7.9 earthquake in the Gulf of Alaska, and the 2016 Kaikoura Mw7.8 earthquake in New Zealand, we consider GPS data from stations of the Global Navigation Satellite System (GNSS) along with integral characteristics of the regional seismic regime, including the accumulated displacement derived from the catalogs of earthquake hypocenter parameters. We did not find any prominent transient pattern in the daily geodetic measurements registered before the six great earthquakes at the nearest GNSS stations. We found that (a) the six cases exhibit different GPS versus seismic displacement correlation patterns before and after the great earthquakes, (b) the observed high variability of the correlation between geodetic ρ(t) and seismic ∑(t) integrals appears indicative of a partial contribution of earthquakes to naturally haphazard sporadic movement of lithospheric blocks of different size, and (c) GPS data confirm the existence of intermittent long periods of regionally stable levels of seismic regime reflected in the control parameter of the Unified Scaling Law for Earthquakes that may change as a result of mid- or even short-term bursts of activity associated with catastrophic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3), 1027.

    Article  Google Scholar 

  • Chen, F., Liu, T., Fu, G. Y., & She, Y. W. (2020). Variation of the mantle viscosity around the Tohoku-Oki Mw9.0 earthquake revealed by post-seismic GPS data. Chinese Journal of Geophysics, 63, 2210–2220. (in Chinese).

    Google Scholar 

  • Crespi, M. G., Kossobokov, V. G., Panza, G. F., & Peresan, A. (2020). Space-time precursory features within ground velocities and seismicity in North-Central Italy. Pure and Applied Geophysics, 177, 369–386.

    Article  Google Scholar 

  • Davis, C., Keilis-Borok, V. I., Kossobokov, V. G., & Soloviev, A. (2012). Advance prediction of the March 11, 2011 Great East Japan Earthquake: a missed opportunity for disaster preparedness. International Journal of Disaster Risk Reduction, 1, 17–32.

    Article  Google Scholar 

  • Diao, F. Q., Xiong, X., Wang, R. J., Zheng, Y., Walter, T. R., Weng, H. H., & Li, J. (2014). Overlapping post-seismic deformation processes: afterslip and viscoelastic relaxation following the 2011 Mw 9.0 Tohoku (Japan) earthquake. Geophysical Journal International, 196, 218–229.

    Article  Google Scholar 

  • Dobrovolsky, I. P., Zubkov, S. I., & Miachkin, V. I. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics, 117, 1025–1044.

    Article  Google Scholar 

  • Doglioni, C., Barba, S., Carminati, E., & Riguzzi, F. (2011). Role of the brittle–ductile transition on fault activation. Physics of the Earth and Planetary Interiors, 184, 160–171.

    Article  Google Scholar 

  • Doglioni, C., Barba, S., Carminati, E., & Riguzzi, F. (2015). Fault on-off versus strain rate and earthquakes energy. Geoscience Frontiers, 6, 265–276.

    Article  Google Scholar 

  • Doglioni, C., Carminati, E., Petricca, P., & Riguzzi, F. (2015). Normal fault earthquakes or graviquakes. Scientific Reports, 5, 12110.

    Article  Google Scholar 

  • Doglioni, C., & Panza, G. F. (2015). Polarized plate tectonics. Advances in Geophysics, 56, 1–167.

    Article  Google Scholar 

  • Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., Wright, T. J., D’Anastasio, E., Bannister, S., Burbidge, D., Denys, P., Gentle, P., Howarth, J., Mueller, C., Palmer, N., Pearson, C., … Stirling, M. (2017). Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand. Science. https://doi.org/10.1126/science.aam7194

    Article  Google Scholar 

  • Hashimoto, M., Choosakul, N., Hashizume, M., Takemoto, S., Takiguchi, H., Fukuda, Y., & Fujimori, K. (2006). Crustal deformations associated with the great Sumatra-Andaman earthquake deduced from continuous GPS observation. Earth, Planets and Space, 58, 127–139.

    Article  Google Scholar 

  • Healy, J.H., Kossobokov, V.G., & Dewey, J.W. (1992). A test to evaluate the earthquake prediction algorithm, M8. US Geological Survey.

  • Ismail-Zadeh, A., & Kossobokov, V. G. (2020). Earthquake prediction, M8 algorithm. In H. Gupta (Ed.), Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer. https://doi.org/10.1007/978-3-030-10475-7_157-1

    Chapter  Google Scholar 

  • Jiang, Z. S., Huang, D. F., Yuan, L. G., Hassan, A., Zhang, L. P., & Yang, Z. Y. (2018). Coseismic and postseismic deformation associated with the 2016 Mw 7.8 Kaikoura earthquake, New Zealand: fault movement investigation and seismic hazard analysis. Earth, Planets and Space, 70, 62. https://doi.org/10.1186/s40623-018-0827-3

    Article  Google Scholar 

  • Jolivet, R., & Frank, W. B. (2020). The transient and intermittent nature of slow slip. AGU Advances, 1, e2019AV000126. https://doi.org/10.1029/2019AV000126

    Article  Google Scholar 

  • Jordan, T. H. (2014). The prediction problems of earthquake system science. Seismological Research Letters, 85, 767–769.

    Article  Google Scholar 

  • Kantorovich, L.V., & Keilis-Borok, V.I. (1991). Earthquake prediction and decision-making: social, economic and civil protection aspects. International Conference on Earthquake Prediction: State-of-the-Art, Strasbourg, 15–18 October 1991 (preprints), 586–593.

  • Keilis-Borok, V. I., & Kossobokov, V. G. (1990). Premonitory activation of seismic flow: algorithm M8. Physics of the Earth and Planetary Interiors, 61, 73–83.

    Article  Google Scholar 

  • Klein, E., Fleitout, L., Vigny, C., & Garaud, J. D. (2016). Afterslip and viscoelastic relaxation model inferred from the large-scale post-seismic deformation following the 2010 Mw8.8 Maule earthquake (Chile). Geophysical Journal International, 205, 1455–1472.

    Article  Google Scholar 

  • Klein, E., Vigny, C., Fleitout, L., Grandin, R., Jolivet, R., Rivera, E., & Métois, M. (2017). A comprehensive analysis of the Illapel 2015 Mw8.3 earthquake from GPS and InSAR data. Earth and Planetary Science Letters, 469, 123–134.

    Article  Google Scholar 

  • Kossobokov, V. G. (2005). Earthquake prediction: principles, implementation, perspectives. Earthquake Prediction and Geodynamic Processes (Computational Seismology, Issue 36, Part 1). GEOS. (in Russian).

    Google Scholar 

  • Kossobokov, V. G. (2011). Are mega earthquakes predictable? Izvestiya, Atmospheric and Oceanic Physics, 46, 951–961.

    Article  Google Scholar 

  • Kossobokov, V. G. (2013). Earthquake prediction: 20 years of global experiment. Natural Hazards, 69, 1155–1177.

    Article  Google Scholar 

  • Kossobokov, V. G. (2017). Testing an earthquake prediction algorithm: the 2016 New Zealand and Chile earthquakes. Pure and Applied Geophysics, 174, 1845–1854.

    Article  Google Scholar 

  • Kossobokov, V. (2020). (2020). Unified scaling law for earthquakes that generalizes the fundamental Gutenberg–Richter relationship. In H. Gupta (Ed.), Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer. https://doi.org/10.1007/978-3-030-10475-7_257-1

    Chapter  Google Scholar 

  • Kossobokov, V. G., & Nekrasova, A. K. (2017). Characterizing aftershock sequences of the recent strong earthquakes in Central Italy. Pure and Applied Geophysics, 174, 3713–3723.

    Article  Google Scholar 

  • Kossobokov, V. G., & Nekrasova, A. K. (2019). Aftershock sequences of the recent major earthquakes in New Zealand. Pure and Applied Geophysics, 176, 1–23.

    Article  Google Scholar 

  • Kossobokov, V. G., Peresan, A., & Panza, G. F. (2015). On operational earthquake forecast and prediction problems. Seismological Research Letters, 86, 287–290.

    Google Scholar 

  • Kossobokov, V. G., Romashkova, L. L., Keilis-Borok, V. I., & Healy, J. H. (1999). Testing earthquake prediction algorithms: statistically significant real-time prediction of the largest earthquakes in the Circum-Pacific, 1992–1997. Physics of the Earth and Planetary Interiors, 111, 187–196.

    Article  Google Scholar 

  • Lay, T., Kanamori, H., Ammon, C. J., Nettles, M., Ward, S. N., Aster, R. C., Beck, S. L., Bilek, S. L., Brudzinski, M. R., Butler, R., DeShon, H. R., Ekström, G., Satake, K., & Sipkin, S. (2005). The great Sumatra-Andaman earthquake of 26 December 2004. Science, 308, 1127–1133.

    Article  Google Scholar 

  • Liu, T., Fu, G. Y., She, Y. W., & Zhao, C. P. (2019). Green’s functions for post-seismic strain changes in a realistic earth model and their application to the Tohoku-Oki Mw 9.0 earthquake. Pure and Applied Geophysics, 176, 3929–3949.

    Article  Google Scholar 

  • Liu, T., Fu, G. Y., She, Y. W., & Zhao, C. P. (2020). Co-seismic internal deformations in a spherical layered earth model. Geophysical Journal International, 221, 1515–1531.

    Article  Google Scholar 

  • Miyazaki, S., McGuire, J. J., & Segall, P. (2011). Seismic and aseismic fault slip before and during the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space. https://doi.org/10.5047/eps.2011.07.001

    Article  Google Scholar 

  • Ni, S., Kanamori, H., & Helmberger, D. (2005). Energy radiation from the Sumatra earthquake. Nature. https://doi.org/10.1038/434582a

    Article  Google Scholar 

  • Normile, D. (1996). Seismology: research gets big boost one year after Kobe earthquake. Science, 271, 285–286.

    Article  Google Scholar 

  • Omori, F. (1894). On the after-shocks of earthquakes. Journal of the College of Science, Imperial University of Tokyo., 7, 111–200.

    Google Scholar 

  • Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2011). Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475, 373–376.

    Article  Google Scholar 

  • Panza, G.F., Peresan, A., & Magrin, A. (2014). Scenari neo-deterministici di pericolosità sismica per il Friuli Venezia Giulia e le aree circostanti. 94, 1–103.

  • Peresan, A., Kossobokov, V. G., & Panza, G. F. (2012). Operational earthquake forecast/prediction. Rendiconti Lincei, 23, 131–138.

    Article  Google Scholar 

  • Riguzzi, F., Crespi, M., Devoti, R., et al. (2012). Geodetic strain rate and earthquake size: new clues for seismic hazard studies. Physics of the Earth and Planetary Interiors, 206–207, 67–75.

    Article  Google Scholar 

  • Rugarli, P., Vaccari, F., & Panza, G. (2019). Seismogenic nodes as a viable alternative to seismogenic zones and observed seismicity for the definition of seismic hazard at regional scale. arXiv:1902.02108 (arXiv preprint).

  • Shao, Z. G., Zhan, W., Zhang, L. P., & Xu, J. (2016). Analysis of the far-field co-seismic and post-seismic responses caused by the 2011 Mw 9.0 Tohoku-Oki Earthquake. Pure and Applied Geophysics, 173, 411–424.

    Article  Google Scholar 

  • Stein, S., & Okal, E. (2005). Speed and size of the Sumatra earthquake. Nature, 434, 581–582.

    Article  Google Scholar 

  • Su, X. N., Meng, G. J., Su, L. N., Wu, W. W., & Liu, T. (2019). Coseismic and early postseismic deformation of the 2016 Mw 7.8 Kaikōura earthquake, New Zealand, from continuous GPS observations. Pure and Applied Geophysics, 177, 285–303.

    Article  Google Scholar 

  • Suito, H., & Freymueller, J. T. (2009). A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. Journal of Geophysical Research. https://doi.org/10.1029/2008JB005954

    Article  Google Scholar 

  • Tilmann, F., Zhang, Y., Moreno, M., Saul, J., Eckelmann, F., Palo, M., Babeyko, A., Chen, K., Baez, J. C., Schurr, B., Wang, R., & Dahm, T. (2015). The 2015 Illapel earthquake, central Chile: a type case for a characteristic earthquake? Geophysical Research Letters, 43, 574–583.

    Article  Google Scholar 

  • Vigny, C., Simons, W., Abu, S., Bamphenyu, R., Satirapod, C., Choosakul, N., Subarya, C., Socquet, A., Omar, K., Abidin, H. Z., & Ambrosius, B. A. C. (2005). Insight into the 2004 Sumatra-Andaman earthquake from GPS measurements in Southeast Asia. Nature, 436, 201–206.

    Article  Google Scholar 

  • Vigny, C., Socquet, A., Peyrat, S., Ruegg, J. C., Métois, M., Madariaga, R., Morvan, S., Lancieri, M., Lacassin, R., Campos, J., Carrizo, D., Bejar-Pizarro, M., Barrientos, S., Armijo, R., Aranda, C., Valderas-Bermejo, M. C., Ortega, I., Bondoux, F., Baize, S., … Kendrick, E. (2011). The 2010 Mw 8.8 Maule megathrust earthquake of Central Chile, monitored by GPS. Science, 332, 1417–1421.

    Article  Google Scholar 

  • Wang, X., Williams, E. F., Karrenbach, M., Herráez, M. G., Martins, H. F., & Zhan, Z. (2020). Rose parade seismology: signatures of floats and bands on optical fiber. Seismological Research Letters. https://doi.org/10.1785/0220200091

    Article  Google Scholar 

  • Wen, Y. M., Guo, Z. L., Xu, C. J., Xu, G. Y., & Song, C. (2019). Coseismic and postseismic deformation associated with the 2018 Mw 7.9 Kodiak, Alaska, earthquake from low-rate and high-rate GPS observations. Bulletin of the Seismological Society of America, 109, 908–918.

    Article  Google Scholar 

  • Yamagiwa, S., Miyazaki, S. I., Hirahara, K., & Fukahata, Y. (2015). Afterslip and viscoelastic relaxation following the 2011 Tohoku-oki earthquake (Mw9. 0) inferred from inland GPS and seafloor GPS/Acoustic data. Geophysical Research Letters, 42, 66–73.

    Article  Google Scholar 

  • Zaccagnino, D., Vespe, F., & Doglioni, C. (2020). Tidal modulation of plate motions. Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2020.103179

    Article  Google Scholar 

  • Zhou, X., Cambiotti, G., Sun, W. K., & Sabadine, R. (2014). The coseismic slip distribution of a shallow subduction fault constrained by prior information: the example of 2011 Tohoku (Mw 9.0) megathrust earthquake. Geophysical Journal International, 199, 981–995.

    Article  Google Scholar 

Download references

Acknowledgements

The study is supported by the Russia Foundation for Basic Research (RFBR) Project no. 19-35-50059 “Study of pre- and post-seismic displacements in the areas of the strongest earthquakes in the world.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir G. Kossobokov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Kossobokov, V.G. Displacements Before and After Great Earthquakes: Geodetic and Seismic Viewpoints. Pure Appl. Geophys. 178, 1135–1155 (2021). https://doi.org/10.1007/s00024-021-02694-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02694-2

Keywords

Navigation