Impact of Urbanization on Groundwater Levels in Rawalpindi City, Pakistan

Abstract

Variations in the rate of urbanization directly impact groundwater levels and quality. Therefore, the present study examines the relationship between changes in land-use and land-cover (LULC) and groundwater drawdown in Rawalpindi, Pakistan. Landsat images, i.e., Operational Land Imager (OLI), Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM+), were downloaded for the years 1991, 1997, 2007, 2010, and 2017. The study area was classified using the normalized difference vegetation index (NDVI) and normalized difference built-up index (NDBI) to create three classes, i.e., urban area, vegetation, and barren land. The groundwater level in the study area for the year 2017 was obtained using an electrical resistivity survey (ERS) with a Schlumberger configuration. The data obtained were interpreted using IX1D iteration software. The results of NDBI and NDVI showed that the urban area increased by 37.89% during the period 1991–2017, at the expense of vegetation. Similarly, the groundwater level was found to decrease at a rate of 1.38 m per annum. If the same trend prevails, the groundwater level will decrease to approximately 160 m from the natural ground surface by the end of this century. The results of the present study may be used for the formulation of policy and proper planning prior to any major developmental project to control the impact of LULC changes on water resources in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

The groundwater data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Abbas, I., Rafique, H. M., Sohl, M. A., Falak, A., Mahmood, S., Imran, M., et al. (2014). Spatio-temporal analysis of groundwater regime within Rawalpindi Municipal Jurisdiction, Pakistan. Desalination and Water Treatment, 52(7–9), 1472–1483. https://doi.org/10.1080/19443994.2013.786658.

    Article  Google Scholar 

  2. Anomohanran, O., & Orhiunu, M. E. (2018). Assessment of groundwater occurrence in Olomoro, Nigeria using borehole logging and electrical resistivity methods. Arabian Journal of Geosciences, 11(9), 219. https://doi.org/10.1007/s12517-018-3582-7.

    Article  Google Scholar 

  3. Choudhury, J., Kumar, K. L., Nagaiah, E., Sonkamble, S., Ahmed, S., & Kumar, V. (2017). Vertical electrical sounding to delineate the potential aquifer zones for drinking water in Niamey city, Niger, Africa. Journal of Earth System Science, 126(6), 91. https://doi.org/10.1007/s12040-017-0860-9.

    Article  Google Scholar 

  4. Cihlar, J., & Jansen, L. (2001). From land cover to land use: A methodology for efficient land use mapping over large areas. The Professional Geographer, 53(2), 275–289. https://doi.org/10.1111/0033-0124.00285.

    Article  Google Scholar 

  5. Dewan, A. M., & Yamaguchi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography, 29(3), 390–401. https://doi.org/10.1016/j.apgeog.2008.12.005.

    Article  Google Scholar 

  6. Dutta, I., & Das, A. (2019). Application of geo-spatial indices for detection of growth dynamics and forms of expansion in English Bazar Urban Agglomeration, West Bengal. Journal of Urban Management, 8(2), 288–302. https://doi.org/10.1016/j.jum.2019.03.007.

    Article  Google Scholar 

  7. Dutta, D., Rahman, A., Paul, S. K., & Kundu, A. (2019). Changing pattern of urban landscape and its effect on land surface temperature in and around Delhi. Environmental Monitoring and Assessment, 191(9), 551. https://doi.org/10.1007/s10661-019-7645-3.

    Article  Google Scholar 

  8. Dutta, D., Rahman, A., Paul, S. K., & Kundu, A. (2020). Estimating urban growth in peri-urban areas and its interrelationships with built-up density using earth observation datasets. The Annals of Regional Science, 65(1), 67–82. https://doi.org/10.1007/s00168-020-00974-8.

    Article  Google Scholar 

  9. Gregorio, A. D. (2016). Land cover classification system: Classification concepts, software version 3. Rome: Food & Agriculture Organization of the United Nations.

    Google Scholar 

  10. Gupta, G., Erram, V. C., & Kuman, S. (2012). Temporal geoelectric behaviour of dyke aquifers in northern Deccan Volcanic Province, India. Journal of Earth System Science, 121(3), 723–732. https://doi.org/10.1007/s12040-012-0180-z.

    Article  Google Scholar 

  11. Haider, H., Zaman, M., Liu, S., Saifullah, M., Usman, M., Chauhdary, J. N., et al. (2020). Appraisal of climate change and its impact on water resources of Pakistan: A case study of Mangla Watershed. Atmosphere, 11(10), 1071. https://doi.org/10.3390/atmos11101071.

    Article  Google Scholar 

  12. Hassan, Z., Shabbir, R., Ahmad, S. S., Malik, A. H., Aziz, N., Butt, A., & Erum, S. (2016). Dynamics of land use and land cover change (LULCC) using geospatial techniques: a case study of Islamabad Pakistan. SpringerPlus, 5(1), 812. https://doi.org/10.1186/s40064-016-2414-z.

    Article  Google Scholar 

  13. Hazarika, N., & Nitivattananon, V. (2016). Strategic assessment of groundwater resource exploitation using DPSIR framework in Guwahati city, India. Habitat International, 51, 79–89. https://doi.org/10.1016/j.habitatint.2015.10.003.

    Article  Google Scholar 

  14. Jat, M. K., Khare, D., Garg, P. K., & Shankar, V. (2009). Remote sensing and GIS-based assessment of urbanisation and degradation of watershed health. Urban Water Journal, 6(3), 251–263. https://doi.org/10.1080/15730620801971920.

    Article  Google Scholar 

  15. Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., et al. (2001). The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11(4), 261–269. https://doi.org/10.1016/S0959-3780(01)00007-3.

    Article  Google Scholar 

  16. Lashkaripour, G. R., & Nakhaei, M. (2005). Geoelectrical investigation for the assessment of groundwater conditions: A case study. Annals of Geophysics, 48(6), 937–944. https://doi.org/10.4401/ag-3244.

    Article  Google Scholar 

  17. Marescot, L., Monnet, R., & Chapellier, D. (2008). Resistivity and induced polarization surveys for slope instability studies in the Swiss Alps. Engineering Geology, 98(1–2), 18–28. https://doi.org/10.1016/j.enggeo.2008.01.010.

    Article  Google Scholar 

  18. McGrane, S. J. (2016). Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrological Sciences Journal, 61(13), 2295–2311. https://doi.org/10.1080/02626667.2015.1128084.

    Article  Google Scholar 

  19. Mishra, N., & Kumar, S. (2015). Impact of land use change on groundwater recharge in Haridwar District. In Proceedings of the 20th International conference on hydraulics, water resources and river engineering. India: IIT Roorkee.

  20. Naikoo, M. W., Rihan, M., Ishtiaque, M., & Shahfahad. (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. Journal of Urban Management, 9(3), 347–359. https://doi.org/10.1016/j.jum.2020.05.004.

    Article  Google Scholar 

  21. Nath, B., Ni-Meister, W., & Choudhury, R. (2021). Impact of urbanization on land use and land cover change in Guwahati city, India and its implication on declining groundwater level. Groundwater for Sustainable Development, 12, 100500. https://doi.org/10.1016/j.gsd.2020.100500.

    Article  Google Scholar 

  22. Nayan, N. K., Das, A., Mukerji, A., Mazumder, T., & Bera, S. (2020). Spatio-temporal dynamics of water resources of Hyderabad Metropolitan Area and its relationship with urbanization. Land Use Policy, 99, 105010. https://doi.org/10.1016/j.landusepol.2020.105010.

    Article  Google Scholar 

  23. Nazaruddin, D. A., Amiruzan, Z. S., Hussin, H., & Jafar, M. T. M. (2017). Integrated geological and multi-electrode resistivity surveys for groundwater investigation in Kampung Rahmat village and its vicinity, Jeli district, Kelantan, Malaysia. Journal of Applied Geophysics, 138, 23–32. https://doi.org/10.1016/j.jappgeo.2017.01.012.

    Article  Google Scholar 

  24. Panda, K. P., Sharma, S. P., & Jha, M. K. (2018). Mapping lithological variations in a river basin of West Bengal, India using electrical resistivity survey: Implications for artificial recharge. Environmental Earth Sciences, 77(17), 626. https://doi.org/10.1007/s12665-018-7813-8.

    Article  Google Scholar 

  25. Patra, S., Sahoo, S., Mishra, P., & Mahapatra, S. C. (2018). Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. Journal of Urban Management, 7(2), 70–84. https://doi.org/10.1016/j.jum.2018.04.006.

    Article  Google Scholar 

  26. Rahman, A., Aggarwal, S. P., Netzband, M., & Fazal, S. (2011). Monitoring urban Sprawl using remote sensing and GIS techniques of a fast growing urban centre, India. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), 56–64. https://doi.org/10.1109/JSTARS.2010.2084072.

    Article  Google Scholar 

  27. Rahman, A., Kumar, S., Fazal, S., & Siddiqui, M. A. (2012). Assessment of land use/land cover change in the north-west district of Delhi using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 40(4), 689–697. https://doi.org/10.1007/s12524-011-0165-4.

    Article  Google Scholar 

  28. Ranjpishe, et al. (2016). The effect of land use changes on groundwater level decline (Case study: North of Urmia lake basin). Journal of Biodiversity and Environmental Sciences (JBES), 9(4), 272–278.

    Google Scholar 

  29. Sahana, M., Hong, H., & Sajjad, H. (2018). Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Science of The Total Environment, 628–629, 1557–1566. https://doi.org/10.1016/j.scitotenv.2018.02.170.

    Article  Google Scholar 

  30. Sajikumar, N., & Remya, R. S. (2015). Impact of land cover and land use change on runoff characteristics. Journal of Environmental Management, 161, 460–468. https://doi.org/10.1016/j.jenvman.2014.12.041.

    Article  Google Scholar 

  31. Singh, S. K., Mustak, S., Srivastava, P. K., Szabó, S., & Islam, T. (2015). Predicting spatial and decadal LULC changes through Cellular Automata Markov Chain Models using earth observation datasets and geo-information. Environmental Processes, 2(1), 61–78. https://doi.org/10.1007/s40710-015-0062-x.

    Article  Google Scholar 

  32. Stonestrom, D. A., Scanlon, B. R., & Zhang, L. (2009). Introduction to special section on impacts of land use change on water resources. Water Resources Research. https://doi.org/10.1029/2009WR007937.

    Article  Google Scholar 

  33. Usman, M., Qamar, M. U., Becker, R., Zaman, M., Conrad, C., & Salim, S. (2020). Numerical modelling and remote sensing based approaches for investigating groundwater dynamics under changing land-use and climate in the agricultural region of Pakistan. Journal of Hydrology, 581, 124408. https://doi.org/10.1016/j.jhydrol.2019.124408.

    Article  Google Scholar 

  34. Voogt, J., & Oke, T. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8.

    Article  Google Scholar 

  35. Walker, R. (2001). Industry builds the city: the suburbanization of manufacturing in the San Francisco Bay Area, 1850–1940. Journal of Historical Geography, 27(1), 36–57. https://doi.org/10.1006/jhge.2000.0268.

    Article  Google Scholar 

  36. Zafar, R., Bashir, S., Nabi, D., & Arshad, M. (2020). Occurrence and quantification of prevalent antibiotics in wastewater samples from Rawalpindi and Islamabad, Pakistan. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2020.142596.

    Article  Google Scholar 

Download references

Acknowledgements

The completion of this research work would not have been possible without the cooperation and assistance of Engr. Aziz Ullah, Deputy Director, Rawalpindi Development Authority (RDA).

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by FH, UAN, HFG, NMK, IA, HR, and MAZ. This revised version of the manuscript was written by FH, IA, and MAZ, and reviewed by NMK and HFG. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ijaz Ahmad.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest related to this work.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

ul Haq, F., Naeem, U.A., Gabriel, H.F. et al. Impact of Urbanization on Groundwater Levels in Rawalpindi City, Pakistan. Pure Appl. Geophys. 178, 491–500 (2021). https://doi.org/10.1007/s00024-021-02660-y

Download citation

Keywords

  • Land use and land cover
  • NDVI
  • NDBI
  • electrical resistivity survey
  • groundwater level
  • urbanization
  • Rawalpindi