Incorporation of Surface Observations in the Land Data Assimilation System and Application to Mesoscale Simulation of Pre-monsoon Thunderstorms

Abstract

In the present study, local insitu observations are utilized in the Land Data Assimilation System (LDAS) to generate high-resolution (4 km and hourly) soil moisture (SM) and soil temperature (ST) data over India. Further, the impact of the LDAS-derived SM and ST initialization on simulation of pre-monsoon (March–May) thunderstorms over the Gangetic West Bengal region are assessed. The high-resolution (4 km and hourly) land surface conditions such as SM and ST data are prepared for the period from 2010 to 2013 using the LDAS forced with various insitu observations from Automatic Weather Stations (AWS), Meteorological Aviation Reports (METAR), and micro-meteorological tower observations over India. Four thunderstorm (TS) events during the pre-monsoon season of 2010 are considered for the numerical experiments using climatological SM and ST at coarser resolution (CNTR) and LDAS-generated high-resolution SM and ST (WLDAS) for initializing the Weather Research and Forecasting (WRF) Model. The efficacy of the LDAS-generated SM and ST data are verified against micro-meteorological tower observations at Kharagpur, West Bengal, and the results indicate the magnitude and variation in the data product are close to observations. The initialization of high-resolution LDAS-generated SM and ST in the WRF improves the simulation of near-surface air temperature, humidity, and pressure at Kharagapur. Most importantly, the location and timing of the storm are relatively better simulated in the WLDAS than CNTR over the Kolkata region. The study encourages the use of more local observations in the generation of high-resolution SM and ST data for application in the simulation of pre-monsoon TSs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Asharfa, S., Dobler, A., & Ahrens, B. (2012). Soil moisture-precipitation feedback processes in the Indian summer monsoon season. Journal of Hydrometeorology, 13, 1461–1474.

    Article  Google Scholar 

  2. Barnes, S.L. (1973). Mesoscale objective map analysis using weighted time series observations. NOAA. Tech. Memo. 60.

  3. Barnes, S. L. (1994). Application of Barnes objective analysis scheme part I: effect of under-sampling, wave position and station randomness. Journal of Atmospheric and Oceanic Technology, 11, 1433–1448.

    Article  Google Scholar 

  4. Chakraborty, P., Sarkar, A., Bhatla, R., & Singh, R. (2020a). Assessing the skill of NCMRWF global ensemble prediction system in predicting Indian summer monsoon during 2018. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2020.105255.

    Article  Google Scholar 

  5. Chakraborty, P., Sarkar, A., Kumar, S., George, J. P., Rajagopal, E. N., & Bhatla, R. (2020b). Assessment of NCMRWF Global Ensemble System with differing ensemble populations for Tropical cyclones prediction. Atmospheric Research, 244, 1–20. https://doi.org/10.1016/j.atmosres.2020.105077.

    Article  Google Scholar 

  6. Chen, F., & Dudhia, J. (2001). Coupling an advanced land-surface hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Monthly Weather Review, 129, 569–585.

    Article  Google Scholar 

  7. Chen, F., Manning, K. W., LeMone, M. A., Trier, S. B., Alfieri, J. G., Roberts, R., et al. (2007). Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. Journal of applied Meteorology and Climatology, 46(6), 694–713.

    Article  Google Scholar 

  8. Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H. L., Koren, V., et al. (1996). Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research: Atmospheres, 101(D3), 7251–7268.

    Article  Google Scholar 

  9. Chen, F., Pielke, R., Sr., & Mitchell, K. (2001). Development and application of land surface models for mesoscale atmospheric models. In V. Lakshmi, J. Alberston, & J. Schaaake (Eds.), Problems and promises. Observation and modeling of the land surface hydrological processes (pp. 107–135). Washington: American Geophysical Union.

    Google Scholar 

  10. Dickinson, R. E. (1992). Land surface. In K. E. Trenberth (Ed.), Climate system modeling (pp. 149–171). Cambridge: University Press.

    Google Scholar 

  11. Eischeid, J. K., Baker, C. B., Karl, T., & Diaz, H. F. (1995). The quality control of long-term climatological data using objective data analysis. Journal of Applied Meteorology, 34, 2787–2795.

    Article  Google Scholar 

  12. Feng, S., Hu, Q., & Qian, W. (2004). Quality control of daily meteorological data in China, 1951–2000: a new dataset. International Journal of Climatology, 24, 853–870.

    Article  Google Scholar 

  13. Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., & Haxeltine, A. (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10(4), 603–628.

    Article  Google Scholar 

  14. Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., et al. (2007). The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55.

    Article  Google Scholar 

  15. Koch, S. E., DesJardins, M., & Kocin, P. J. (1983). An interactive Barnes objective map analysis scheme for use with satellite and conventional data. Journal of Climate and Applied Meteorology., 22(9), 1487–1503.

    Article  Google Scholar 

  16. Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., et al. (2004). Regions of strong coupling between soil moisture and precipitation. Science, 305(5687), 1138–1140.

    Article  Google Scholar 

  17. Koster, R. D., Suarez, M. J., & Heiser, M. (2000). Variance and predictability of precipitation at seasonal-to-interannual timescales. Journal of Hydrometeorology, 1(1), 26–46.

    Article  Google Scholar 

  18. Lim, Y. J., Byun, K. Y., Lee, T. Y., Kwon, H., Hong, J., & Kim, J. (2012). A land data assimilation system using the MODIS-derived land data and its application to numerical weather prediction in East Asia. Asia-Pacific Journal of Atmospheric Sciences, 48(1), 83–95.

    Article  Google Scholar 

  19. Litta, A. J., Mary Ididcula, S., Mohanty, U. C., & Kiran Prasad, S. (2012). Comparison of thunderstorm simulations from WRF-NMM and WRF-ARW models over east Indian region. The Scientific World Journal. https://doi.org/10.1100/2012/951870.

    Article  Google Scholar 

  20. Los, S. O., Weedon, G. P., North, P. R., Kaduk, J. D., Taylor, C. M., & Cox, P. M. (2006). An observation-based estimate of the strength of rainfall-vegetation interactions in the Sahel. Geophysical Research Letters, 33(16), L16402.

    Article  Google Scholar 

  21. Maurya, R. K. S., Sinha, P., Mohanty, M. R., & Mohanty, U. C. (2017). Coupling of community land model with RegCM4 for Indian summer monsoon simulation. Pure and Applied Geophysics, 174, 4251–4270.

    Article  Google Scholar 

  22. Meek, D. W., & Hatfield, J. L. (1994). Data quality checking for single station meteorological databases. Agricultural and Forest Meteorology, 69, 85–109.

    Article  Google Scholar 

  23. Mohanty, U. C., Nayak, H. P., Sinha, P., Osuri, K. K., & Niyogi, D. (2019). Land surface processes over Indian summer monsoon region: a review. Mausam, 70, 551–560.

    Google Scholar 

  24. National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce (2000) NCEP FNL operational model global tropospheric analyses, continuing from July 1999. UCAR/NCAR - Research Data Archive. https://doi.org/10.5065/D6M043C6

  25. Nayak, H. P., & Mandal, M. (2014). Analysis of stability parameters in relation to precipitation associated with pre-monsoon thunderstorms over Kolkata, India. Journal of Earth System Science, 123(4), 689–703.

    Article  Google Scholar 

  26. Nayak, H. P., Osuri, K. K., Sinha, P., Nadimpalli, R., Mohanty, U. C., Chen, F., et al. (2018). High-resolution gridded soil moisture and soil temperature datasets for the Indian monsoon region. Scientific Data, 5, 180264. https://doi.org/10.1038/sdata.2018.264.

    Article  Google Scholar 

  27. Nayak, H. P., Sinha, P., Satyanarayana, A. N. V., Bhattacharya, A., & Mohanty, U. C. (2019). Performance evaluation of high-resolution land data assimilation system (HRLDAS) over Indian region. Pure and Applied Geophysics, 176(1), 389–407.

    Article  Google Scholar 

  28. Osuri, K. K., Nadimpalli, R., Mohanty, U. C., Chen, F., Rajeevan, M., & Niyogi, D. (2017). Improved prediction of severe thunderstorms over the Indian Monsoon region using high-resolution soil moisture and temperature initialization. Scientific Reports, 7, 41377. https://doi.org/10.1038/srep41377.

    Article  Google Scholar 

  29. Pai, D. S., Sridhar, L., Rajeevan, M., Sreejith, O. P., Satbhai, N. S., & Mukhopadhyay, B. (2014). Development of a new high spatial resolution (0.25∘×0.25∘) long period (1901–2010) daily gridded rainfall dataset over India and its comparison with existing data sets over the region. Mausam, 65, 1–18.

    Google Scholar 

  30. Pielke, R. A., Avissar, R., Raupach, M., Dolman, A. J., Zeng, X., & Denning, A. S. (1998). Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Global Change Biology, 4(5), 461–475.

    Article  Google Scholar 

  31. Pitman, A. J. (2003). The evolution of, and revolution in land surface schemes designed for climate models. International Journal of Climatology, 23(5), 479–510.

    Article  Google Scholar 

  32. Prasad, S. K., Mohanty, U. C., Routray, A., Osuri, K. K., Ramakrishna, S. S., & Niyogi, D. (2014). Impact of Doppler weather radar data on thunderstorm simulation during STORM pilot phase—2009. Natural Hazards, 74(3), 1403–1427.

    Article  Google Scholar 

  33. Reynolds, C. A., Jackson, T. J., & Rawls, W. J. (2000). Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedo-transfer functions. Water Resources Research, 36, 3653–3662.

    Article  Google Scholar 

  34. Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., et al. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24(14), 3624–3648.

    Article  Google Scholar 

  35. Rodell, M., Houser, P. R., Jambor, U. E., Gottschalck, J., Mitchell, K., Meng, C. J., et al. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394.

    Article  Google Scholar 

  36. Sarkar, A., Dutta, D., Chakraborty, P., Dutta, S. K., Majumdar, S., Payra, S., & Bhatla, R. (2020). Influence of cumulus convection and cloud microphysics parameterizations on the prediction of Western Disturbances. Meteorology and Atmospheric Physics, 132, 413–426. https://doi.org/10.1007/s00703-019-00697-2.

    Article  Google Scholar 

  37. Sellers, P. J. (1992). Biophysical models of land surface processes. In K. E. Trenberth (Ed.), Climate system modeling (pp. 451–490). Cambridge: University Press.

    Google Scholar 

  38. Sharma, K., Ashrit, R., Bhatla, R., Mitra, A. K., Iyengar, G. R., & Rajagopal, E. N. (2017). Skill of predicting heavy rainfall over India: improvement in recent years using UKMO global model. Pure and Applied Geophysics, 174(11), 4241–4250. https://doi.org/10.1007/s00024-017-1640-9.

    Article  Google Scholar 

  39. Sharma, K., Ashrit, R., Ebert, E., Mitra, A., Bhatla, R., Iyengar, G., & Rajagopal, E. N. (2019). Assessment of Met Office Unified Model (UM) quantitative precipitation forecasts during the Indian summer monsoon: contiguous rain area (CRA) approach. Journal of Earth System Science, 128(1), 1–17. https://doi.org/10.1007/s12040-018-1023-3.

    Article  Google Scholar 

  40. Singh, A. P., Mohanty, U. C., Sinha, P., & Mandal, M. (2007). Influence of different land surface processes on Indian summer monsoon circulation. Natural Hazards, 42, 423–438.

    Article  Google Scholar 

  41. Singh, O., & Singh, J. (2015). Lightning fatalities over India: 1979–2011. Meteorological Applications, 22, 770–778.

    Article  Google Scholar 

  42. Sinha, P., Nageswararao, M. M., Dash, G. P., Nair, A., & Mohanty, U. C. (2018). Pre-monsoon rainfall and surface air temperature trends over India and its global linkages. Meteorology and Atmospheric Physics. https://doi.org/10.1007/s00703-018-0621-6.

    Article  Google Scholar 

  43. Skamarock, W. C., Klemp, J., Dudhia, J., Gill, D. O., Barker, D., Wang, W., & Powers, J. G. (2008). A description of the advanced research WRF version 3. NCAR Technical Note. https://doi.org/10.5065/D68S4MVH.

    Article  Google Scholar 

  44. Tyagi, B., Krishna, V. N., & Satyanarayana, A. N. V. (2011). Study of thermodynamic indices in forecasting pre-monsoon thunderstorms over Kolkata during STORM pilot phase 2006–2008. Natural Hazards, 56(3), 681–698.

    Article  Google Scholar 

  45. Wade, C. G. (1987). A quality control program for surface meso meteorological data. Journal of Atmospheric and Oceanic Technology, 4, 435–453.

    Article  Google Scholar 

  46. Xinmin, Z., Ming, Z., & Bingkai, S. (2000). A numerical study on effects of land—surface heterogeneity from ‘combined approach’ on atmospheric process part II: coupling—model simulations. Advances in Atmospheric Sciences, 17, 241–255.

    Article  Google Scholar 

  47. Unnikrishnan, C. K., Rajeevan, M., Rao, S. V. B., & Kumar, M. (2013). Development of a high resolution land surface dataset for the South Asian monsoon region. Current Science, 1059, 1235–1246.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support given by the Earth System Science Organization, Ministry of Earth Sciences, Government of India (Grant no./Project no. MM/SERP/CNRS/2013/INT-10/002) to conduct this research under the Monsoon Mission. The Global Modeling and Assimilation Office (GMAO), Goddard Earth Sciences Data and Information Service Center (GES DISC), and the National Aeronautics Space Administration are sincerely acknowledged for providing Modern-Era Retrospective Analysis for Research and Applications (MERRA), Global Land Data Assimilation (GLDAS) data, and 3-hourly satellite rainfall estimates, respectively. The Meteorological and Oceanographic Satellite Data Archival Centre (MOSDAC) is acknowledged for providing insitu observations. The Continental Tropical Convergence Zone (CTCZ) program is acknowledged for providing AWS observations. The India Meteorological Department (IMD), Pune is acknowledged for providing AWS observations. The authors are thankful to the anonymous reviewers for their valuable comments that helped to improve the quality of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Palash Sinha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1023 KB)

Appendix

Appendix

Barnes Objective Analysis

The precipitation is interpolated using the Barnes successive correction method (Barnes 1973; Koch et al. 1983). The Barnes scheme assumes the desired scalar field at the grid point is the sum of the known prior information or the background and weighted sum of the observational increment inside a certain radius of influence. The weight (Wn) at each station within radius R is a function of distance (Xn, Yn) to grid point (i, j) and expressed as:

$${W}_{n}=\mathrm{exp} \left(-\frac{{{d}_{n}}^{2}}{{R}^{2}}\right),$$
(1)

where d is the distance between station observation and grid point. For the grid point inside the radius of influence of station observation, the first guess is calculated as:

$${g}_{1}(i,j)=\frac{\sum_{n=1}^{N}{W}_{n}S({x}_{n},{y}_{n})}{\sum_{n=1}^{N}{W}_{n}},$$
(2)

where S\(\left({x}_{n, }{y}_{n}\right)\) is the observation value within the radius of influence. The first guess is added with a correction term given by

$$g_{{2~}} \left( {i,j} \right) = g_{1} \left( {i,j} \right) + \frac{{\sum\nolimits_{{n = 1}}^{N} {W^{\prime}_{n} \left[ {S\left( {x_{n} ,y_{n} } \right) - S^{\prime}\left( {x_{n} ,y_{n} } \right)} \right]} }}{{\sum\nolimits_{{n = 1}}^{N} {W^{\prime}_{n} } }},$$
(3)

where \({s}^{{\prime}}\left({x}_{n, }{y}_{n}\right)\) is the first guess obtained at observation point using an inverse distance interpolation technique. The W′ is the corrected weight given by

$${{W}^{{\prime}}}_{n}=\mathrm{exp}\left(- \frac{{{d}_{n}}^{2}}{\gamma {R}^{2}}\right),$$
(4)

where γ (gamma) is the convergence parameter and can vary between 0 and 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nayak, H.P., Sinha, P. & Mohanty, U.C. Incorporation of Surface Observations in the Land Data Assimilation System and Application to Mesoscale Simulation of Pre-monsoon Thunderstorms. Pure Appl. Geophys. 178, 565–582 (2021). https://doi.org/10.1007/s00024-021-02654-w

Download citation

Keywords

  • Thunderstorm
  • land data assimilation system
  • soil moisture
  • soil temperature
  • insitu observations