Skip to main content
Log in

Seismic Source of the Earthquake of Camana Peru 2001 (Mw 8.2) from Joint Inversion of Geodetic and Tsunami Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

On June 23, 2001 at 15:33 local time (20:33 UTC), a strong earthquake of magnitude Mw 8.2 shook the southern region of Peru, causing considerable material damage and the loss of 74 human lives. The epicenter was located in the sea near the city of Atico (Arequipa). As a coseismic effect, a local tsunami was generated, which after 15 min, caused the flood and destruction of the beach resorts of Camana and resulted in the death of 25 people and 62 missing persons. Another coseismic effect was the subsidence of the coastal zones in the source region, evidenced by geodetic observations. We have conducted a joint inversion of tsunami and geodetic data with a fault plane of variable dip to obtain the slip distribution. The main asperity (slip = 12.6 m) was located offshore Camana, this explains the great damage in this city. The seismic moment was calculated in \(2.72\times 10^{21}\) Nm and the corresponding moment magnitude was Mw 8.2. The subfaults near the trench have a null slip, therefore there is a high potential for the generation of a tsunamigenic earthquake in the updip of the fault plane near the trench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Observed data from Pritchard et al. (2007) and Ocola (2008)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe, K. (1979). Size of great earthquakes of 1837–1974 inferred from tsunami data. Journal of Geophysical Research: Solid Earth, 84(B4), 1561–1568.

    Article  Google Scholar 

  • Adriano, B., Mas, E., Koshimura, S., Fujii, Y., Yanagisawa, H., & Estrada, M. (2016). Revisiting the 2001 Peruvian earthquake and tsunami impact along Camana beach and the coastline using numerical modeling. Chap 1 in tsunamis and earthquakes in coastal environments. Cham: Springer. https://doi.org/10.1007/978-3-319-28528-3-1.

    Book  Google Scholar 

  • Audin, L., Lacan, P., & Bondoux, F. (2008). Upper plate deformation and seismic barrier in front of Nazca subduction zone: The Chololo fault system and active tectonics along the Coastal Cordillera, southern Peru. Tectonophysics, 459, 174–185.

    Article  Google Scholar 

  • Barazangi, M., & Isacks, B. (1976). Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Journal of Geology, 4, 686–692.

    Article  Google Scholar 

  • Bilek, S., & Ruff, L. (2002). Analysis of the 23 June 2001 Mw = 8.4 Peru underthrusting earthquake and its aftershocks. Geophysical Research Letters, 29(20), 89. https://doi.org/10.1029/2002GL015543.

    Article  Google Scholar 

  • Carpio, J., Zamudio, Y., & Salas, H. (2002). Características generales del Tsunami asociado al terremoto de Arequipa del 23 de Junio 2001 (Mw = 8.2). Instituto Geofísico del Perú, CNDG, pp 121–128.

  • Chlieh, M., Perfettini, H., Tavera, H., Avouac, J., Remy, D., Nocquet, J., et al. (2011). Interseismic coupling and seismic potential along the Central Andes subduction zone. Journal of Geophysical Research: Solid Earth, 116(B12405), 21.

    Google Scholar 

  • Comte, D., & Pardo, M. (1991). Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Natural Hazards, 4, 23–44.

    Article  Google Scholar 

  • Dorbath, L., Cisternas, A., & Dorbath, C. (1990). Assessment of the size of large and great historical earthquakes in Peru. Bulletin of the Seismological Society of America, 80(3), 515–576.

    Google Scholar 

  • Hayes, G., Wald, D., & Johnson, R. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth, 117, B01302. https://doi.org/10.1029/2011JB008524.

    Article  Google Scholar 

  • Imamura, F., Yalciner, A, & Ozyurt, G. (2006). Tsunami Modelling Manual (Tunami model). Retrieved from http://www.tsunami.civil.tohoku.ac.jp/hokusai3/E/projects/manual-ver-3.1.pdf.

  • Ioualalen, M., Perfettini, H., Yauri, S., & Jiménez, C. (2013). Tsunami modeling to validate slip models of the 2007 Mw8.0 Pisco earthquake, Central Peru. Pure and Applied Geophysics, 170, 433–451. https://doi.org/10.1007/s00024-012-0608-z.

    Article  Google Scholar 

  • Jiménez, C. (2007). Procesamiento digital de señales sísmicas con Matlab. Revista de Investigacion de Fisica, 10(2), 23.

    Google Scholar 

  • Jiménez, C., Adriano, B., Koshimura, S., & Fujii, Y. (2011). The tsunami of Camana 2001. In 8th CUEE conference proceedings, pp 1567–1571.

  • Jiménez, C., & Moggiano, N. (2020). Numerical simulation of the 1940 Lima–Peru earthquake and tsunami (Mw 8.0). Journal of Seismology, 24(1), 89–99. https://doi.org/10.1007/s10950-019-09887-2.

    Article  Google Scholar 

  • Jiménez, C., Moggiano, N., Mas, E., Adriano, B., Fujii, Y., & Koshimura, S. (2014). Tsunami waveform inversion of the 2007 Peru (8.1 Mw) earthquake. Journal of Disaster Research, 9(6), 954–969.

    Article  Google Scholar 

  • Johnson, J. (1999). Heterogeneous coupling along Alaska–Aleutians as inferred from tsunami, seismic and geodetic inversions. Advances in Geophysics, 39, 116.

    Google Scholar 

  • Kikuchi, M., & Yamanaka, Y. (2001). Near coast of Peru earthquake (Mw 8.2) on June 23, 2001. In EIC seismological note No. 105. Retrieved from http://wwweic.eri.u-tokyo.ac.jp/topics/200106232033/index.html.

  • Lawson, C., & Hanson, R. (1974). Solving least squares problems. New York: Prentice-Hall.

    Google Scholar 

  • Lay, T., Ammon, C., Hutko, A., & Kanamori, H. (2010). Effects on kinematic constraints on teleseismic finite-source rupture inversions: Great Peruvian earthquakes of 23 June 2001 and 15 August 2007. Bulletin of the Seismological Society of America, 100(3), 969–994.

    Article  Google Scholar 

  • Lay, T., & Wallace, T. (1995). Modern global seismology. International Geophysics Series, 58, 535.

    Google Scholar 

  • Moreno, M., Bolte, J., Klotz, J., & Melnick, D. (2009). Impact of megathrust geometry on inversion of cosesimic slip from geodetic data: Application to the 1960 Chile earthquake. Geophysical Research Letters, 36, L16310. https://doi.org/10.1029/2009GL039276.

    Article  Google Scholar 

  • Ocola, L. (2008). Southern Peru coseismic subsidence: 23 June 8.4 Mw earthquake. Advances in Geosciences, 14, 79–83.

    Article  Google Scholar 

  • Okal, E., Dengler, L., Araya, S., Borrero, J., Gomer, B., Koshimura, S., et al. (2002). Field survey of the Camana, Peru Tsunami of 23 June 2001. Seismological Research Letters, 73(6), 907–920.

    Article  Google Scholar 

  • Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2011). Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475, 373–376. https://doi.org/10.1038/nature10227.

    Article  Google Scholar 

  • Pritchard, M., Norabuena, E., Ji, C., Boroschek, R., Comte, D., Simons, M., et al. (2007). Geodetic, teleseismic and strong motion constraints on slip from recent southern Peru subduction zone earthquakes. Journal of Geophysical Research: Solid Earth, 112(B03307), 24.

    Google Scholar 

  • Robinson, D., Das, S., & Watts, A. (2006). Earthquake rupture stalled by a subducting fracture zone. Science, 312, 1203–1205.

    Article  Google Scholar 

  • Satake, K. (1993). Depth distribution of coseismic slip along the Nankai Trough, Japan, from joint inversion of geodetic and tsunami data. Journal of Geophysical Research: Solid Earth, 98(B3), 4553–4565.

    Article  Google Scholar 

  • Sparkes, R., Tilmann, F., Hovius, N., & Hillier, J. (2010). Subducted seafloor relief stops rupture in South American great earthquakes: Implications for rupture behaviour in the 2010 Maule, Chile earthquake. Earth and Planetary Science Letters, 298, 89–94.

    Article  Google Scholar 

  • Tavera, H., Buforn, E., Bernal, I., Antayhua, Y., & Vilcapoma, L. (2002). The Arequipa (Peru) earthquake of June 23, 2001. Journal of Seismology, 6, 279–283.

    Article  Google Scholar 

  • Villegas, J. (2009). Modelos de velocidad unidimensional para las regiones norte, centro y sur de Perú. Perú: UNSA.

    Google Scholar 

  • Wang, R., Lorenzo, M., & Roth, F. (2003). Computation of deformation induced by earthquakes in a multilayer elastic crust—Fortran programs EDGRN/EDCMP. Computers and Geosciences, 29, 195–207.

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the comments and observations made by Hernando Tavera. We thank the Universidad Nacional Mayor de San Marcos and CONCYTEC-Peru for the partial support to carry out this research. We also appreciate the observations of the anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Jiménez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, C., Carbonel, C. & Villegas-Lanza, J.C. Seismic Source of the Earthquake of Camana Peru 2001 (Mw 8.2) from Joint Inversion of Geodetic and Tsunami Data. Pure Appl. Geophys. 178, 4763–4775 (2021). https://doi.org/10.1007/s00024-020-02616-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02616-8

Keywords

Navigation