Skip to main content
Log in

Ground Motion to Intensity Conversion Equations for Iran

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

New empirical relations between macroseismic intensity and ground motion parameters including peak ground acceleration and velocity are developed using strong ground motion data and Modified Mercalli Intensity (MMI) information from earthquakes within Iran plateau. The strong motion data consists of 116 three-component waveforms of 23 earthquakes with Mw 5.1–7.3 occurred from 1977 to 2017. The intensity values for each ground motion record were assigned considering the location of accelerograph stations on the isoseismal maps. Simple predictive equations are obtained by fitting a linear model to the mean peak ground motion values applying least squares regression. However, visual inspection of residuals shows magnitude and distance dependency for this set of equations. Improved relationships between ground motion and intensity are derived by comprising magnitude and distance terms as predictive variables. The refined ground motion to intensity conversion equations show smaller variability than simple linear equations in predicting MMI values. Both proposed models are compared with similar relationships in Iran and other regions of the world. The observed discrepancies in relationships may reflect the differences in input data, especially the macroseismic intensity assignments as well as regional variability. The proposed relations can be used for rapid hazard assessments and loss estimation in Iran and surrounding regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadzadeh, S., Javan Doloei, G., & Zafarani, H. (2020). New intensity prediction equation for Iran. Journal of Seismology, 24, 23–35.

    Article  Google Scholar 

  • Allen, T. I., Wald, D. J., Hotovec, A. J., Lin, K., Earle, P. S., & Marano, K. D. (2008). An atlas of ShakeMaps for selected global earthquakes. US Geological Survey Open-File Report 2008-1236, Golden, CO, p. 47.

  • Ambraseys, N. N., & Melville, C. (1982). A history of Persian earthquakes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Atkinson, G., & Kaka, S. (2007). Relationship between felt intensity and instrumental ground motion in the Central United States and California. Bulletin of the Seismological Society of America, 97, 497–510.

    Article  Google Scholar 

  • Atkinson, G., & Sonley, E. (2000). Empirical relationships between Modified Mercalli Intensity and response spectra. Bulletin of the Seismological Society of America, 90, 537–544.

    Article  Google Scholar 

  • Berberian, M., Papastamatiou, D., & Qoraishi, M. (1977). Khurgu (North Bandar Abbas-Iran) Earthquake of March 21, 1977; a preliminary field report and a seismotectonic discussion. In: M. Berberian (Ed.), Contribution to the seismotectonics of Iran, Part III (vol. 40, pp. 7–49). Iran: Geol Surv Iran.

  • Bilal, M., & Askan, A. (2014). Relationships between felt intensity and recorded ground motion parameters for Turkey. Bulletin of the Seismological Society of America, 104(1), 484–496.

    Article  Google Scholar 

  • Caprio, M., Tarigan, B., Worden, C. B., Wiemer, S., & Wald, D. J. (2015). Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency. Bulletin of the Seismological Society of America, 105, 1476–1490.

    Article  Google Scholar 

  • Cua, G., Wald, D. J., Allen, T. I., Garcia, D., Worden, C. B., Lin, K., & Marano, K. (2010). Best practices for using macroseismic intensity and ground motion-intensity conversion equations for hazard and loss models in GEM1. GEM Technical Report 6. GEM Foundation Pavia, Italy, p. 57.

  • Du, K., Ding, B., Luo, H., & Sun, J. (2019). Relationship between peak ground acceleration, peak ground velocity, and macroseismic intensity in Western China. Bulletin of the Seismological Society of America, 109(1), 284–297. https://doi.org/10.1785/0120180216.

    Article  Google Scholar 

  • Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A., & Priestley, K. (2006). Relocation and assessment of seismicity in the Iran region. Geophysical Journal International, 167, 761–778.

    Article  Google Scholar 

  • Faenza, L., & Michelini, A. (2010). Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap. Geophysical Journal International, 180(3), 1138–1152.

    Article  Google Scholar 

  • Ghayamghamian, M. R., Ahmadzadeh, S., & Mirzaei, N. (2012). Evaluation of damage functions for non-engineering buildings during the 2005 Dahooiyeh-Zarand earthquake in Iran. Sharif Journal Civil Engineering, 27(4), 79–89.

    Google Scholar 

  • Gomez-Capera, A. A., D’Amico, M., Lanzano, G., et al. (2020). Relationships between ground motion parameters and macroseismic intensity for Italy. Bulletin Earthquake Engineering. https://doi.org/10.1007/s10518-020-00905-0.

    Article  Google Scholar 

  • Grünthal, G. (Ed.). (1998). European Macroseismic Scale 1998. Cahiers du Centre Europèen de Gèodynamique et de Seismologie. Europe: Conseil de l’Europe, Conseil de l’Europe.

    Google Scholar 

  • Hofer, L., Zanini, M. A., & Faleschini, F. (2016). Analysis of the Amatrice macroseismic data. Annals of Geophysics, 59(5), 10.

    Google Scholar 

  • Kaka, S., & Atkinson, G. (2004). Relationships between instrumental intensity and ground motion parameters in Eastern North America. Bulletin of the Seismological Society of America, 94, 1728–1736.

    Article  Google Scholar 

  • Locati, M., Gómez Capera, A. A., Puglia, R., & Santulin, M. (2017). Rosetta, a tool for linking accelerometric recordings and macroseismic observations: description and applications. Bulletin of Earthquake Engineering, 15, 2429–2443.

    Article  Google Scholar 

  • McGowan, S. M., Jaiswal, K. S., & Wald, D. J. (2017). Using structural damage statistics to derive macroseismic intensity within the Kathmandu valley for the 2015 M78 Gorkha, earthquake. Tectonophysics. https://doi.org/10.1016/j.tecto.2016.08.002.

    Article  Google Scholar 

  • Medvedev, S., Sponheuer, W., & Karník, V. (1964). Neue seismische Skala Intensity scale of earthquakes, 7. Tagung der Europäischen Seismologischen Kommission vom 24.9. bis 30.9.1962. In: V. Jena (Ed.), Institut für Bodendynamik und Erdbebenforschung in Jena (vol. 77, pp. 69–76). Deutsche Akademie der Wissenschaften zu Berlin.

  • Murphy, J. R., & O’Brien, L. J. (1977). The correlation of peak ground acceleration amplitude with seismic intensity and other physical parameters. Bulletin of the Seismological Society of America, 67, 877–915.

    Google Scholar 

  • Musson, R. M. W., Grünthal, G., & Stucchi, M. (2010). The comparison of macroseismic intensity scales. Journal of Seismology, 14, 413–428.

    Article  Google Scholar 

  • Nemati, M. (2016). Relationships between modified mercalli intensity and engineering ground-motion of the earthquakes in Persia. Journal of Earthquake Engineering, 20, 795–808.

    Article  Google Scholar 

  • Ogweno, L. P., & Cramer, C. H. (2017). Improved CENA regression relationships between Modified Mercalli intensities and ground motion parameters. Bulletin of the Seismological Society of America, 107, 180–197. https://doi.org/10.1785/0120160033.

    Article  Google Scholar 

  • Scordilis, E. M. (2006). Empirical global relations converting MS and mb to moment magnitude. Journal of Seismology, 10, 225–236.

    Article  Google Scholar 

  • Sieberg, A. (1930). Geologie der Erdbeben. Handbuch der Geophysik, 2(4), 552–555.

    Google Scholar 

  • Theodulidis, N., & Papazachos, B. (1992). Dependence of strong ground motion on magnitude-distance, site geology and macroseismic intensity for shallow earthquakes in Greece: I, Peak horizontal acceleration, velocity and displacement. Soil Dynamics Earthquake Engineering, 11, 387–402.

    Article  Google Scholar 

  • Trifunac, M., & Brady, A. (1975). On the correlation of seismic intensity scales with the peaks of recorded strong ground motion. Bulletin of the Seismological Society of America, 65, 139–162.

    Google Scholar 

  • Tslentis, G., & Danciu, L. (2008). Empirical relationships between modified Mercalli intensity and engineering ground-motion parameters in Greece. Bulletin of the Seismological Society of America, 98(4), 1863–1875.

    Article  Google Scholar 

  • Wald, D. J., Quitoriano, V., Heaton, T., & Kanamori, H. (1999). Relationships between peak ground acceleration, peak ground velocity and modified Mercalli intensity in California. Earthquake Spectra, 15(3), 557–564.

    Article  Google Scholar 

  • Wood, H. O., & Neumann, F. (1931). Modified Mercalli intensity scale of 1931. Bulletin of the Seismological Society of America, 21, 277–283.

    Google Scholar 

  • Worden, C. B., Gerstenberger, M. C., Rhoades, D. A., & Wald, D. J. (2012). Probabilistic relationships between ground-motion parameters and modified Mercalli intensity in California. Bulletin of the Seismological Society of America, 102, 204–221.

    Article  Google Scholar 

  • Yaghmaei-Sabegh, S., Tsang, H. H., & Lam, N. T. K. (2011). Conversion between peak ground motion parameters and modified Mercalli intensity values. Journal of Earthquake Engineering, 15(7), 1138–1155.

    Article  Google Scholar 

  • Zafarani, H., & Soghrat, M. R. (2017). A selected database of the Iranian strong motion records. Natural Hazards, 86, 1307–1332.

    Article  Google Scholar 

  • Zanini, M. A., Hofer, L., & Faleschini, F. (2019). Reversible ground motion-to-intensity equations based on the EMS-98 scale. Engineering Structures, 180, 310–320.

    Article  Google Scholar 

  • Zanini, M. A., Hofer, L., Faleschini, F., Zampieri, P., & Fabris, Pellegrino C. (2016). Preliminary macroseismic survey of the 2016 Amatrice seismic sequence. Annals of Geophysics. https://doi.org/10.4401/ag-7172.

    Article  Google Scholar 

  • Zare, M. (2017). Recent development of the earthquake strong motion-intensity Catalog and intensity prediction equations for Iran. Journal of Seismology, 21, 591–613.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Building and Housing Research Centre (BHRC) of Iran for providing them with the accelerograms and shear-wave velocities used in the current study. We acknowledge two anonymous reviewers and the Editor for their helpful comments and constructive reviews. SA is partially funded by International Institute of Earthquake Engineering and Seismology under Project no. #5396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Javan Doloei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadzadeh, S., Doloei, G.J. & Zafarani, H. Ground Motion to Intensity Conversion Equations for Iran. Pure Appl. Geophys. 177, 5435–5449 (2020). https://doi.org/10.1007/s00024-020-02586-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02586-x

Keywords

Navigation