Skip to main content
Log in

Connection of Seismic Noise Properties in Japan and California with Irregularity of Earth’s Rotation

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The problem of the relationship of the properties of seismic noise with the irregular rotation of the Earth is considered. We study the median daily values of the multifractal singularity spectrum support width, the generalized Hurst exponent, and the seismic noise wavelet-based entropy on the networks of broadband seismic stations in Japan and California for the time interval 1997–2019. The first principal components of the noise properties in a half year moving time window are calculated. The coherence spectra are estimated both between the principal noise components in two regions and each principal component with a time series of the length of day (LOD). It has been shown that an increase in the power of high-frequency pulsations of LOD (for periods less than 6 days) is accompanied by a decrease in the coherence between the properties of seismic noise in Japan and California. The degree of synchronization of the response of changes in the properties of seismic noise in Japan and California to the irregularity of Earth’s rotation in a “long” moving time window of 5 years is estimated. For this purpose, the correlation coefficient and the “secondary” coherence spectrum between synchronous variations of the “primary” coherence spectra between the LOD and each of the main noise components obtained in the “short” half-year window, as well as their mutual correlation function, were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ardhuin, F., Stutzmann, E., Schimmel, M., & Mangeney, A. (2011). Ocean wave sources of seismic noise. Journal of Geophysical Research, 116, C09004.

    Article  Google Scholar 

  • Aster, R., McNamara, D., & Bromirski, P. (2008). Multidecadal climate induced variability in microseisms. Seismological Research Letters, 79, 194–202.

    Article  Google Scholar 

  • Bendick, R., & Bilham, R. (2017). Do weak global stresses synchronize earthquakes? Geophysical Research Letters, 2017(44), 8320–8327. https://doi.org/10.1002/2017GL074934.

    Article  Google Scholar 

  • Berger, J., Davis, P., & Ekstrom, G. (2004). Ambient earth noise: A survey of the global seismographic network. Journal of Geophysical Research, 2004(109), B11307.

    Google Scholar 

  • Costa, M., Goldberger, A. L., & Peng, C.-K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71(2005), 021906.

    Article  Google Scholar 

  • Costa, M., Peng, C.-K., Goldberger, A. L., & Hausdorf, J. M. (2003). Multiscale entropy analysis of human gait dynamics. Physica A Statistical Mechanics and its Applications, 330(2003), 53–60.

    Article  Google Scholar 

  • Currenti, G., del Negro, C., Lapenna, V., & Telesca, L. (2005). Multifractality in local geomagnetic field at Etna volcano, Sicily (southern Italy). Natural Hazards and Earth System Sciences, 5, 555–559.

    Article  Google Scholar 

  • Dutta, S., Ghosh, D., & Chatterjee, S. (2013). Multifractal detrended fluctuation analysis of human gait diseases. Frontiers in Physiology, 4, 2013. https://doi.org/10.3389/fphys.2013.00274.

    Article  Google Scholar 

  • Feder, J. (1988). Fractals (p. 284). New York: Plenum Press.

    Book  Google Scholar 

  • Friedrich, A., Krüger, F., & Klinge, K. (1998). Ocean-generated microseismic noise located with the Gräfenberg array. Journal of Seismology, 2(1), 47–64.

    Article  Google Scholar 

  • Fukao, Y. K., Nishida, K., & Kobayashi, N. (2010). Seafloor topography, ocean infragravity waves, and background Love and Rayleigh waves. Journal of Geophysical Research, 115, B04302.

    Article  Google Scholar 

  • Grevemeyer, I., Herber, R., & Essen, H.-H. (2000). Microseismological evidence for a changing wave climate in the northeast Atlantic Ocean. Nature, 408, 349–352.

    Article  Google Scholar 

  • Humeaua, A., Chapeau-Blondeau, F., Rousseau, D., Rousseau, P., Trzepizur, W., & Abraham, P. (2008). Multifractality, sample entropy, and wavelet analyses for age-related changes in the peripheral cardiovascular system: Preliminary results. Medical Physics American Association of Physicists in Medicine, 35(2), 717–727.

    Google Scholar 

  • Ivanov, P. C., Amaral, L. A. N., Goldberger, A. L., Havlin, S., Rosenblum, M. B., Struzik, Z., et al. (1999). Multifractality in healthy heartbeat dynamics. Nature, 399, 461–465.

    Article  Google Scholar 

  • Jolliffe, I. T. (1986). Principal component analysis (p. 487). Berlin: Springer. https://doi.org/10.1007/b98835.

    Book  Google Scholar 

  • Kantelhardt, J. W., Zschiegner, S. A., Konscienly-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A Statistical Mechanics and its Applications, 316(1–4), 87–114.

    Article  Google Scholar 

  • Kobayashi, N., & Nishida, K. (1998). Continuous excitation of planetary free oscillations by atmospheric disturbances. Nature, 395, 357–360.

    Article  Google Scholar 

  • Koper, K. D., & de Foy, B. (2008). Seasonal anisotropy in short-period seismic noise recorded in South Asia. Bulletin of the Seismological Society of America, 98, 3033–3045.

    Article  Google Scholar 

  • Koper, K. D., Seats, K., & Benz, H. (2010). On the composition of Earth’s short-period seismic noise field. Bulletin of the Seismological Society of America, 100(2), 606–617.

    Article  Google Scholar 

  • Levin, B. W., Sasorova, E. V., Steblov, G. M., Domanski, A. V., Prytkov, A. S., & Tsyba, E. N. (2017). Variations of the Earth's rotation rate and cyclic processes in geodynamics. Geodesy and Geodynamics, 2017(8), 206–212. https://doi.org/10.1016/j.geog.2017.03.007.

    Article  Google Scholar 

  • Lyubushin, A. A. (2008) Multifractal properties of low-frequency microseismic noise in Japan, 1997–2008. In Book of abstracts of seventh general assembly of the Asian Seismological Commission and Japan Seismological Society, 2008 Fall Meeting, Tsukuba, Japan, 24–27 November 2008, p. 92.

  • Lyubushin, A. (2010). Multifractal parameters of low-frequency microseisms, in synchronization and triggering: From fracture to earthquake processes. In V. de Rubeis (Ed.), GeoPlanet: Earth and planetary sciences 1, Chapter 15 (pp. 253–272). Berlin: Springer. https://doi.org/10.1007/978-3-642-12300-9_15.

    Chapter  Google Scholar 

  • Lyubushin, A. (2012). Prognostic properties of low-frequency seismic noise. Natural Sciences, 4(8A), 659–666. https://doi.org/10.4236/ns.2012.428087.

    Article  Google Scholar 

  • Lyubushin, A. (2013). How soon would the next mega-earthquake occur in Japan. Natural Sciences, 5(8), 1–7. https://doi.org/10.4236/ns.2013.58A1001.

    Article  Google Scholar 

  • Lyubushin, A. A. (2014a). Dynamic estimate of seismic danger based on multifractal properties of low-frequency seismic noise. Natural Hazards, 70(1), 471–483. https://doi.org/10.1007/s11069-013-0823-7.

    Article  Google Scholar 

  • Lyubushin, A. A. (2014b). Analysis of coherence in global seismic noise for 1997–2012. Izvestiya, Physics of the Solid Earth, 50(3), 325–333. https://doi.org/10.1134/S1069351314030069.

    Article  Google Scholar 

  • Lyubushin, A. A. (2015). Wavelet-based coherence measures of global seismic noise properties. Journal of Seismology, 19(2), 329–340. https://doi.org/10.1007/s10950-014-9468-6.

    Article  Google Scholar 

  • Lyubushin, A. A. (2017). Long-range coherence between seismic noise properties in Japan and California before and after Tohoku mega-earthquake. Acta Geodaetica et Geophysica, 52, 467–478. https://doi.org/10.1007/s40328-016-0181-5.

    Article  Google Scholar 

  • Lyubushin, A. (2018). Global coherence of GPS-measured high-frequency surface tremor motions. GPS Solutions, 22, 116. https://doi.org/10.1007/s10291-018-0781-3.

    Article  Google Scholar 

  • Lyubushin, A. (2018a). Synchronization of geophysical fields fluctuations. In T. Chelidze, L. Telesca, & F. Vallianatos (Eds.), Complexity of seismic time series: Measurement and applications, Chapter 6 (pp. 161–197). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-813138-1.00006-7.

    Chapter  Google Scholar 

  • Lyubushin, A. A. (2018b). Cyclic properties of seismic noise and the problem of predictability of the strongest earthquakes in Japanese Islands. Izvestiya, Atmospheric and Oceanic Physics, 54(10), 1460–1469. https://doi.org/10.1134/S0001433818100067.

    Article  Google Scholar 

  • Lyubushin, A. (2019). Field of coherence of GPS-measured earth tremors. GPS Solutions, 23, 120. https://doi.org/10.1007/s10291-019-0909-0.

    Article  Google Scholar 

  • Lyubushin, A. A. (2020). Trends of global seismic noise properties in connection to irregularity of earth’s rotation. Pure and Applied Geophysics, 177(2), 621–636. https://doi.org/10.1007/s00024-019-02331-z.

    Article  Google Scholar 

  • Mallat, S. (1999). A wavelet tour of signal processing (2nd ed.). San Diego: Academic Press.

    Google Scholar 

  • Marple, S. L., Jr. (1987). Digital spectral analysis with applications. Englewood Cliffs: Prentice-Hall Inc.

    Google Scholar 

  • Nishida, K., Kawakatsu, H., Fukao, Y., & Obara, K. (2008). Background Love and Rayleigh waves simultaneously generated at the Pacific Ocean floors. Geophysical Research Letters, 35, L16307.

    Article  Google Scholar 

  • Nishida, K., Montagner, J., & Kawakatsu, H. (2009). Global surface wave tomography using seismic hum. Science, 326(5949), 112.

    Article  Google Scholar 

  • Pavlov, A. N., & Anishchenko, V. S. (2007). Multifractal analysis of complex signals. Physics Uspekhi Fizicheskikh Nauk Russian Academy of Sciences, 50(8), 819–834. https://doi.org/10.1070/PU2007v050n08ABEH006116.

    Article  Google Scholar 

  • Ramirez-Rojas, A., Munoz-Diosdado, A., Pavia-Miller, C. G., & Angulo-Brown, F. (2004). Spectral and multifractal study of electroseismic time series associated to the Mw=6.5 earthquake of 24 October 1993 in Mexico. Natural Hazards and Earth System Sciences, 4, 703–709.

    Article  Google Scholar 

  • Rhie, J., & Romanowicz, B. (2004). Excitation of Earth’s continuous free oscillations by atmosphere-ocean-seafloor coupling. Nature, 2004(431), 552–554.

    Article  Google Scholar 

  • Rhie, J., & Romanowicz, B. (2006). A study of the relation between ocean storms and the Earth's hum. Geochemistry, Geophysics, Geosystems, 7, 10. https://doi.org/10.1029/2006GC001274.

    Article  Google Scholar 

  • Sarlis, N. V., Skordas, E. S., Mintzelas, A., & Papadopoulou, K. A. (2018). Micro-scale, mid-scale, and macro-scale in global seismicity identified by empirical mode decomposition and their multifractal characteristics. Scientific Reports., 8, 9206. https://doi.org/10.1038/s41598-018-27567-y.

    Article  Google Scholar 

  • Shanker, D., Kapur, N., & Singh, V. (2001). On the spatio temporal distribution of global seismicity and rotation of the Earth—a review. Acta Geodaetica et Geophysica Hungarica, 36, 175–187. https://doi.org/10.1556/AGeod.36.2001.2.5.

    Article  Google Scholar 

  • Stehly, L., Campillo, M., & Shapiro, N. M. (2006). A study of the seismic noise from its long-range correlation properties. Journal of Geophysical Research, 111, B10306.

    Article  Google Scholar 

  • Tanimoto, T. (2001). Continuous free oscillations: Atmosphere–solid earth coupling. Annual Review of Earth and Planetary Sciences, 29, 563–584.

    Article  Google Scholar 

  • Tanimoto, T. (2005). The oceanic excitation hypothesis for the continuous oscillations of the Earth. Geophysical Journal International, 160, 276–288.

    Article  Google Scholar 

  • Taqqu, M. S. (1988). Self-similar processes. Encyclopedia of statistical sciences, vol 8 (pp. 352–357). New York: Wiley.

    Google Scholar 

  • Telesca, L., & Lovallo, M. (2011). Analysis of the time dynamics in wind records by means of multifractal detrended fluctuation analysis and the Fisher–Shannon information plane. Journal of Statistical Mechanics: Theory and Experiment. https://doi.org/10.1088/1742-5468/2011/07/P07001.

    Article  Google Scholar 

  • Varotsos, P., Sarlis, N., & Skordas, E. (2003). Long range correlations in the signals that precede rupture: Further investigations. Physical Review E, 67(021109), 13. https://doi.org/10.1103/PhysRevE.67.021109.

    Article  Google Scholar 

  • Varotsos, P. A., Sarlis, N. V., & Skordas, E. S. (2011). Natural time analysis: The new view of time. Precursory seismic electric signals, earthquakes and other complex time series (p. 449). Berlin: Springer.

    Book  Google Scholar 

  • Varotsos, P., Sarlis, N., & Skordas, E. (2013b). Attempt to distinguish electric signals of a dichotomous nature. Physical Review E, 68(031106), 7. https://doi.org/10.1103/PhysRevE.68.031106.

    Article  Google Scholar 

  • Zotov, L., Bizouard, C., & Shum, C. K. (2016). A possible interrelation between Earth rotation and climatic variability at decadal time-scale. Geodesy and Geodynamics, 7(3), 216–222. https://doi.org/10.1016/j.geog.2016.05.005.

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Russian Foundation for Basic Research, Grant no. 18-05-00133, project "Estimation of fluctuations of seismic hazard on the basis of complex analysis of the Earth’s ambient noise."

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Lyubushin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubushin, A. Connection of Seismic Noise Properties in Japan and California with Irregularity of Earth’s Rotation. Pure Appl. Geophys. 177, 4677–4689 (2020). https://doi.org/10.1007/s00024-020-02526-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02526-9

Keywords

Navigation