Seismic Hazard Analysis for Southern Slope of the Greater Caucasus (Azerbaijan)

Abstract

In this paper seismic hazard for the sourthern slope of the Greater Caucasus (Azerbaijan) was assessed by using five major parameters: moment magnitude, simulated peak ground acceleration (PGA) from four target earthquakes, intensity scenario, amplification factor and b value. The deterministic scenario-based seismic hazard assessment method was applied by using the seismic catalogues compiled by the Republican Center of Seismological Survey at Azerbaijan National Academy of Sciences. Additionally this study presents hazard assessment analysis on 67 active faults tracing in the southern slope of the Greater Caucasus, considering the fault’s location, size and length, and calculating the magnitude for those faults and lineaments estimated by empirical correlations. Our findings are: (1) maximum earthquake of Mw 8.0 is estimated for the western area zone and is used to generate one of the seismic scenarios of the region; (2) intensity distribution classifies the region into the highest hazard level with intensity value of 7 and over in the westward part and also in the eastward of the studied territory, in contrast to some areas in the southern part of the region which has the lowest level with intensity value of 6 and over; (3) the b value distribution shows that lower values are observed in the western part of the region (Zagatala, Sheki), in the Shamakhi area and on some areas of the northern part indicating higher stress in those areas; (4) PGA map from scenario earthquakes demonstrates that the very high PGAs are scattered in the west and east parts of the study area, while independently from the epicenter of the target earthquakes, the low and very low PGA is scattered in the central part of the study area. Such seismic hazard analysis with consideration of one of the main five parameters and target earthquake scenarios could help the region’s sustainable development against earthquakes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Agayeva, S. T., & Babayev, G. R. (2009). Analysis of earthquake focal mechanisms for Greater and Lesser Caucasus applying the method of World Stress Map. Azerbaijan National Academy of Sciences. In Proceedings of Geology Institute, Baku, “Nafta-Press no. 2, Baku, pp. 40–44.

  2. Aki, K. (1965). Maximum likelihood estimate of b in the formula log(N) = a-bM and its confidence limits. Bulletin of the Earthquake Research Institute University of Tokyo, 43, 237–239.

    Google Scholar 

  3. Alizadeh, A. A. (Eds). (2008). Geological map of Azerbaijan Republic, Scale 1:500,000, with Explanatory Notes. Baki Kartoqrafiya Fabriki.

  4. Alizadeh, A. A., Guliyev, I. S., Kadirov, F. A., & Eppelbaum, L. V. (2016). Geosciences of Azerbaijan. Volume I: Geology, 2016 (p. 340). Cham: Springer. https://doi.org/10.1007/978-3-319-27395-2.239.

    Google Scholar 

  5. Aptikayev, F., & Kopnichev, Y. (1979). Considering focal earthquake mechanism at the prediction of strong motion parameters. In Doklady/Transactions of the U.S.S.R. Academy of Sciences, vol. 247, pp. 822–825 (in Russian).

  6. Babayev, G. (2010). About some aspects of probabilistic seismic hazard assessment of Absheron peninsula. Republican Seismic Survey Center of Azerbaijan National Academy of Sciences. Catalogue of Seismoprognosis Research Carried Out in Azerbaijan Territory in 2009, “Teknur”, Baku, pp. 59–64 (in Russian).

  7. Babayev, G. R., Agayeva, S. T., Ismail-Zade, T. T., Muradi, I. B., & Aliyev, Y. N. (2019). Seismic effect assessment of the southern slope of Greater Caucasus (Azerbaijan) based on the earthquake scenarios: Ground parameters and acceleration models. Geophysical Journal, 3(41), 152–170. https://doi.org/10.24028/gzh.0203-3100.v41i3.2019.172471. (original in Russian).

    Article  Google Scholar 

  8. Babayev, G. R., Akhmedova, E. V., & Kadirov, F. A. (2017). Analysis of stress-strain state of Caucasus region (Azerbaijan) on the basis of maximum horizontal stress vectors and World Stress Map. Application technique. Geophysical Journal, 3(39), 26–39. https://doi.org/10.24028/gzh.0203-3100.v39i3.2017.104026. (in Russian).

    Article  Google Scholar 

  9. Babayev, G., Ismail-Zadeh, A., & Le Mouël, J.-L. (2010). Scenario-based earthquake hazard and risk assessment for Baku (Azerbaijan). Natural Hazards Earth System Science, 10, 2697–2712. https://doi.org/10.5194/nhess-10-2697-2010.

    Article  Google Scholar 

  10. Babayev, G., & Telesca, L. (2014). Strong motion scenario of 25th November 2000 earthquake for Absheron peninsula (Azerbaijan). Natural Hazards, 73(2014), 1647–1661.

    Article  Google Scholar 

  11. Babayev, G., & Telesca, L. (2016). Site specific ground motion modeling and seismic response analysis for microzonation of Baku, Azerbaijan. Acta Geophysica, 64(6), 2151–2170. https://doi.org/10.1515/acgeo-2016-0105.

    Article  Google Scholar 

  12. Baghbani, M., Gholami, E., & Barani, H. R. R. (2016). Probabilistic seismic hazard analysis for a Dam Siyaho in South Khorasan province (Eastern Iran). Geodynamics Research International Bulletin, 4(02), 34–48.

    Google Scholar 

  13. Bonilla, M. G., Mark, R. K., & Lienkaemper, J. J. (1984). Statistical relations among earthquake magnitude, surface rupture length and surface fault displacement. Bulletin of Seismology Society of American, 74, 2379–2411.

    Google Scholar 

  14. Dobry, R., Borcherdt, R. D., Crouse, C. B., Idriss, I. M., Joyner, W. B., Martin, G. R., et al. (2000). New site coefficients and site classification system used in recent building seismic code provisions. Earthquake Spectra, 16(1), 41–67.

    Article  Google Scholar 

  15. ESRI. (2011). ArcGIS Desktop: Release 10. Environmental Systems Research Institute (ESRI). Redlands: ESRI.

    Google Scholar 

  16. Gubin, I. E. (1974). Seismogenic faults and their meaning for seismic zoning. Geotectonics, 6, 29–40. (in Russian).

    Google Scholar 

  17. Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of Seismology Society American, 34, 185–188.

    Google Scholar 

  18. Gutenberg, B., & Richter, C. F. (1956). Magnitude and energy of earthquake. Annual Geofisiks (Rome), 9, 1–15.

    Google Scholar 

  19. Idriss, I. M., & Seed, H. B. (1968). Seismic response of horizontal soil layer. Journal of the Soil Mechanics and Foundations Division ASCE, 94, 1003–1031.

    Google Scholar 

  20. Jackson, J., Priestley, K., Allen, M., & Berberian, M. (2002). Active tectonics of the South Caspian Basin. Geophysical Journal International, 148, 214–245.

    Google Scholar 

  21. Kadirov, F. A. (2000). Gravity field and models of deep structure of Azerbaijan (p. 112). Baku: Nafta-Press. (monograph in Russian).

    Google Scholar 

  22. Kadirov, F. A., Floyd, M. A., Alizadeh, A., Guliev, I., Reilinger, R. E., Kuleli, S., et al. (2012). Kinematics of the Caucasus near Baku, Azerbaijan. Journal of Natural Hazards, 63, 997–1006. https://doi.org/10.1007/s11069-012-0199-0.

    Article  Google Scholar 

  23. Kadirov, F. A., Gadirov, A. G., Babayev, G. R., Agayeva, S. T., Mammadov, S. K., Garagezova, N. R., et al. (2013). Seismic Zoning of the Southern Slope of Greater Caucasus from the fractal parameters of the earthquakes, stress state and GPS velocities, Izvestiya. Physics of the Solid Earth, 49(4), 554–562.

    Article  Google Scholar 

  24. Kangarli, T. N., & Akhundov, A. B. (1998). Surface and deep structure of southern slope of the Greater Caucasus. Soviet Geology, 10, 42–52. (in Russian).

    Google Scholar 

  25. Kanlı, A. I. (2010). Integrated approach for surface wave analysis from near-surface to bedrock, Chapter 29, advances in near-surface seismology and ground-penetrating radar, geophysical, pp. 461–476.

  26. Kanli, A. I., Kang, T. S., Pınar, A., Tildy, P., & Pronay, Z. (2008). A systematic geophysical approach for site response of the Dinar Region, South Western Turkey. Journal of Earthquake Engineering, 12(1), 165–174.

    Article  Google Scholar 

  27. Kanli, A. I., Tildy, P., Pronay, Z., Pınar, A., & Hermann, L. (2006). VS30 mapping and soil classification for seismic site effect evaluation in Dinar Region, SW Turkey. Geophysical Journal International, 165(1), 223–235.

    Article  Google Scholar 

  28. Khain, V. E., & Alizade, A. A. (2005). Geology of Azerbaijan. Volume IV. Tectonics (pp. 214–234). Baku: Nafta-Press. (in Russian).

    Google Scholar 

  29. Khalilov, E., Mekhtiyev, S., & Khain, Y. (1987). Some geophysical data confirming the collisional origin of the Greater Caucasus. Geotectonics, 21, 132–136.

    Google Scholar 

  30. Kondorskaya, N., & Shebalin, N. (1982). New catalog of strong earthquakes in the USSR from ancient times through 1977. Boulder: World Data Center A for Solid Earth Geophysics.

    Google Scholar 

  31. McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., et al. (2000). Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105, 5695–5719. https://doi.org/10.1029/1999jb900351.

    Article  Google Scholar 

  32. Midorikawa, S., Matsuoka, M., & Sakugawa, K. (1992). Evaluation of site effects on peak ground acceleration and velocity observed during the 1987 Chiba-ken-toho-oki earthquake. Journal of Structural and Construction Engineering Architectural Institute of Japan, 442, 71–78. (in Japanese with English abstract).

    Google Scholar 

  33. Murphy, J., & O’brien, L. (1977). The correlation of peak ground acceleration amplitude with seismic intensity and other physical parameters. Bulletin of the Seismological Society of America, 67, 877–915.

    Google Scholar 

  34. Nemčok, M., Feyzullayev, A., Kadirov, A., Zeynalov, G., Allen, R., Christensen, C., et al. (2011). Neotectonics of the Caucasus and Kura valley, Azerbaijan. Global Engineers and Technologist Review, 1(1), 1–14.

    Google Scholar 

  35. Nilforoushan, F., Masson, F., Vernant, P., Vigny, C., Martinod, J., Abbassi, M., et al. (2003). GPS network monitors the Arabia-Eurasia collision deformation in Iran. Journal of Geodesy, 77, 411–422. https://doi.org/10.1007/s00190-003-0326-5.

    Article  Google Scholar 

  36. Ordónez, G. A. (2003). SHAKE2000: A computer program for the 1-D analysis of the geotechnical earthquake engineering problem.

  37. Panza, G., Irikura, K., Kouteva-Guentcheva, M., Peresan, A., Wang, Z., & Saragoni, R. (Eds.). (2011). Advanced seismic hazard assessment (1st ed., Vol. 168, p. 752). Basel: Springer.

    Google Scholar 

  38. Panza, G., Romanelli, F., & Vaccari, F. (2001). Seismic wave propagation in laterally heterogeneous anelastic media: Theory and applications to seismic zonation. Advances in Geophysics, 43, 1–95.

    Article  Google Scholar 

  39. Philip, H., Cisternas, A., Gvishiani, A., & Gorshkov, A. (1989). The Caucasus: An actual example of the initial stages of continental collision. Tectonophysics, 161, 1–21.

    Article  Google Scholar 

  40. Reilinger, R. E., McClusky, S. C., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., et al. (2006). GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, 111, B5. https://doi.org/10.1029/2005jb004051.

    Article  Google Scholar 

  41. Riznichenko, Yu V. (1965). From the activity of seismic sources to the intensity recurrence at the ground surface. Izvestiya Akademii Nauk Sssr Fizika Zemli, 11, 1–12. (in Russian).

    Google Scholar 

  42. Scordilis, E. M. (2006). Empirical global relations converting Ms and mb to moment magnitude. Journal of Seismology, 10, 225–236.

    Article  Google Scholar 

  43. Seed, H. B., Idriss, J. M., & Kiefer, F. M. (1969). Characteristics of Rock Motions during Earthquakes. ASCE Journal of the Soil Mechanics and Foundations Division, 20, 95.

    Google Scholar 

  44. Shebalin, N. (1961). Intensity, magnitude, and source depth of earthquakes. Earthquakes in the USSR (pp. 126–138). Moscow: USSR Academy of Sciences.

    Google Scholar 

  45. Telesca, L., Kadirov, F., Yetirmishli, G., Safarov, F., Babayev, G., & Ismaylova, S. (2017). Statistical analysis of the 2003–2016 seismicity of Azerbaijan and surrounding areas. Journal of Seismology, 21, 1467–1485. https://doi.org/10.1007/s10950-017-9677-x.

    Article  Google Scholar 

  46. Telesca, L., Lovallo, M., Babayev, G., & Kadirov, F. (2013). Spectral and informational analysis of seismicity: An application to the 1996–2012 seismicity of Northern Caucasus–Azerbaijan part of Greater Caucasus–Kopet Dag Region. Physica A Statistical Mechanics and Its Applications, 392, 6064–6078. https://doi.org/10.1016/j.physa.2013.07.031.

    Article  Google Scholar 

  47. Trifunac, M., & Brady, A. (1975). On the correlation of seismic intensity scales with the peaks of recorded strong ground motion. Bulletin of the Seismological Society of America, 65, 139–162.

    Google Scholar 

  48. Utsi, T. (1961). Ststistical study of occurrence of aftershocks. Geophysical Magazine, 30, 521–605.

    Google Scholar 

  49. Veber, M. V. (1904). Recherches preliminaries sur le tremblement de terrea Chamakha, Comptes Rendue des Seances, Tome I (pp. 238–241). St.-Petersbourg: Academie Imperiale des Sciences.

    Google Scholar 

  50. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90, 859–869.

    Article  Google Scholar 

  51. Developments Series No. 15, SEG Reference Publications, Society of Exploration Geophysics Reference Publications Program, Tulsa, Oklahoma-USA. Society of Exploration Geophysicists, American.

  52. Kuliyev, F. T. (1986). Otchet o seysmicheskom mikrorayonirovanii territorii Bolshogo Baku (p. 56). Baku: Fond Instituta Geologii AN Azerb SSR.

    Google Scholar 

  53. Mammadli, T. Y. (2007). Weak seismicity of Azerbaijan territory and its relation with the contemporary geodynamics. Post-doctoral dissertation thesis, Baku, Azerbaijan, p. 350 (original in Azerbaijani).

  54. Yetirmishli, G. C., Mammadli, T. Y., & Kazimova, S. E. (2013). Features of seismicity of Azerbaijan part of the Greater Caucasus. Journal of Georgian Geophysical Society, Issue (A), Physics of Solid Earth, 16a, 55–60.

    Google Scholar 

Download references

Acknowledgements

The authors are cordially thankful to the Republican Center of Seismic Survey (RCSS) at Azerbaijan National Academy of Sciences (ANAS) for providing earthquake catalogue and respective data. The study was performed at International Laboratory of Geology and Geophysics Institute of Azerbaijan National Academy of Sciences and Institute of Methodologies for Environmental Analysis National Research Council (Italy) “Earthquake space–time analysis and hazard laboratory (ESTAHL)”. L.T. and G. B. thanks the support of the CNR-ANAS project Telesca/Kadirov 2018–2019.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Telesca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babayev, G., Telesca, L., Agayeva, S. et al. Seismic Hazard Analysis for Southern Slope of the Greater Caucasus (Azerbaijan). Pure Appl. Geophys. 177, 3747–3760 (2020). https://doi.org/10.1007/s00024-020-02478-0

Download citation

Keywords

  • Seismic hazard
  • PGA
  • b value
  • intensity
  • estimated magnitude
  • Greater Caucasus