Skip to main content
Log in

Analyzing the Spatial Occurrence of High-Alumina Clays (Brazil) Using Electrical Resistivity Tomography (ERT)

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Mottled and high-alumina clay horizons (Gleysols) above dismantled iron crusts (Ferralsols) are widespread in the soils that developed on the flat sedimentary plateau located in western Minas Gerais State (Brazil). Field exploration shows that the deposits of high-alumina clays are located at a lower topographic position, mottled horizons suggesting a lateral transformation system. Two-dimensional and pseudo-three-dimensional electrical resistivity tomography (ERT) techniques have been tested to investigate the distribution of high-alumina clay layers in a thick lateritic mantle, and to assess the potential of the technique to delimitate ore reserves. The figures of resistivity, based on spatial variations of electrical properties of the weathering layers, showed spatial changes in the subsurface structure of weathering mantle, expanding the distribution of iron crust and the high-alumina clay layers, which are strongly influenced by aquifer. Combining 2D and pseudo-3D geophysical images with soil morphology and geochemistry, we delimitate the high-alumina clay layer and discuss its genesis. The ore is located exclusively on the edge of the plateau and is closely linked to the development of hydromorphic soils, exactly where the vertical water flow is restrained by the iron crust. This distinct water regime defines the geochemical transfers in soil mantle, depleting Fe2O3 from Gleysol and correspondingly increasing Al2O3 and SiO2. This study aimed to evaluate the potential of ERT as a prospecting tool for supergene ore, and as a technique with reduced environmental impact in the mineral research, when compared to the pre-existing exploration methods (trenches, drill holes and extraction) that are applied on this sensitive wetland system in which high-alumina clays may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abem, A. I. (2012). Terrameter LS Instruction Manual (p. 122). ABEM Instrument Sundbyberg: Sundbyberg.

    Google Scholar 

  • Baldwin, D., Naithani, K. J., & Lin, H. (2017). Combined soil-terrain stratification for characterizing catchment-scale soil moisture variation. Geoderma, 285, 260–269. https://doi.org/10.1016/j.geoderma.2016.09.031.

    Article  Google Scholar 

  • Beauvais, A. (2009). Ferricrete biochemical degradation on the rainforest-savannas boundary of Central African Republic. Geoderma, 150(3–4), 379–388. https://doi.org/10.1016/j.geoderma.2009.02.023.

    Article  Google Scholar 

  • Beauvais, A., & Chardon, D. (2013). Modes, tempo, and spatial variability of Cenozoic cratonic denudation: The West African example. Geochemistry, Geophysics, Geosystems, 14(5), 1590–1608. https://doi.org/10.1002/ggge.20093.

    Article  Google Scholar 

  • Beauvais, A., Ritz, M., Parisot, J. C., Bantsimba, C., & Dukhan, M. (2004). Combined ERT and GPR methods for investigating two-stepped lateritic weathering systems. Geoderma, 119(1–2), 121–132. https://doi.org/10.1016/j.geoderma.2003.06.001.

    Article  Google Scholar 

  • Beauvais, A., Ritz, M., Parisot, J. C., Dukhan, M., & Bantsimba, C. (1999). Analysis of poorly stratified lateritic terrains overlying a granitic bedrock in West Africa, using 2-D electrical resistivity tomography. Earth and Planetary Science Letters, 173(4), 413–424. https://doi.org/10.1016/S0012-821X(99)00245-9.

    Article  Google Scholar 

  • Beerten, K., Deforce, K., & Mallants, D. (2012). Landscape evolution and changes in soil hydraulic properties at the decadal, centennial and millennial scale: A case study from the Campine area, northern Belgium. CATENA. https://doi.org/10.1016/j.catena.2012.03.005.

    Article  Google Scholar 

  • Braun, J. J., Descloitres, M., Riotte, J., Fleury, S., Barbiéro, L., Boeglin, J. L., et al. (2009). Regolith mass balance inferred from combined mineralogical, geochemical and geophysical studies: Mule Hole gneissic watershed, South India. Geochimica et Cosmochimica Acta, 73(4), 935–961. https://doi.org/10.1016/j.gca.2008.11.013.

    Article  Google Scholar 

  • Butt, C. R. M., Lintern, M. J., & Anand, R. R. (2000). Evolution of regoliths and landscapes in deeply weathered terrain—Implications for geochemical exploration. Ore Geology Reviews, 16(3–4), 167–183. https://doi.org/10.1016/S0169-1368(99)00029-3.

    Article  Google Scholar 

  • Carrara, E., Pece, R., & Roberti, N. (1994). Geoelectrical and seismic prospections in hydrogeology: Model and master curves for the evaluation of porosity and water saturation. Pure and Applied Geophysics PAGEOPH, 143(4), 729–751. https://doi.org/10.1007/BF00879507.

    Article  Google Scholar 

  • Carrazza, L. P., Moreira, C. A., & Helene, L. P. I. (2016). Gully cavity identification through electrical resistivity tomography. Revista Brasileira de Geofísica, 34(2), 241–250. https://doi.org/10.22564/rbgf.v34i2.799.

    Article  Google Scholar 

  • Chadwick, O. A., Brimhall, G. H., & Hendricks, D. M. (1990). From a black to a gray box—A mass balance interpretation of pedogenesis. Geomorphology, 3(3–4), 369–390. https://doi.org/10.1016/0169-555X(90)90012-F.

    Article  Google Scholar 

  • Coelho, C. V. S., & Rosolen, V. (2016). Caracterização morfológica, mineralógica e química dos níveis de alteração da Formação Marília (membro Serra da Galga) do Neocretáceo da Bacia Bauru, no Triângulo Mineiro (MG). Pesquisas Em Geociências, 43(2), 139–151.

    Article  Google Scholar 

  • DNPM. (2016). Sumário Mineral 2016. Brasília. Retrieved from http://www.anm.gov.br/dnpm/publicacoes/serie-estatisticas-e-economia-mineral/sumario-mineral/sumario-mineral-brasileiro-2016.

  • Dahlin, T. (1996). 2D resistivity surveying for environmental and engineering applications. First Break, 14(7), 275–283.

    Article  Google Scholar 

  • Daniels, R. B., Gamble, E. E., & Nelson, L. A. (1971). Relations between soil morphology and water-table levels on a dissected North Carolina coastal plain surface 1. Soil Science Society of America Journal, 35(5), 781–784.

    Article  Google Scholar 

  • deGroot-Hedlin, C., & Constable, S. (1990). Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55(12), 1613–1624.

    Article  Google Scholar 

  • Dentith, M., & Mudge, S. (2014). Geophysics for the mineral exploration geoscientist. Cambridge: Cambridge University Press. https://doi.org/10.5860/choice.186586.

    Book  Google Scholar 

  • Dias-Brito, D., Musacchio, E. A., De Castro, J. C., Maranhão, M., Suárez, J. M., & Rodrigues, R. (2001). Grupo Bauru: uma unidade continental do Cretáceo no Brasil-concepções baseadas em dados micropaleontológicos, isotópicos e estratigráficos. Revue de Paléobiologie, 20(1), 245–304.

    Google Scholar 

  • Eltner, A., Baumgart, P., Maas, H., & Faust, D. (2015). Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil. Earth Surface Processes and Landforms, 40(6), 741–755.

    Article  Google Scholar 

  • Everett, M. E. (2013). Near-Surface applied geophysics. United Kingdom: Cambridge University Press.

    Book  Google Scholar 

  • Ganiyu, S. A., Badmus, B. S., Oladunjoye, M. A., Aizebeokhai, A. P., Ozebo, V. C., Idowu, O. A., et al. (2016). Assessment of groundwater contamination around active dumpsite in Ibadan southwestern Nigeria using integrated electrical resistivity and hydrochemical methods. Environmental Earth Sciences, 75(8), 643.

    Article  Google Scholar 

  • Greer, B. M., Burbey, T. J., Zipper, C. E., & Hester, E. T. (2017). Electrical resistivity imaging of hydrologic flow through surface coal mine valley fills with comparison to other landforms. Hydrological Processes, 31(12), 2244–2260. https://doi.org/10.1002/hyp.11180.

    Article  Google Scholar 

  • Helaly, A. S. (2017). Assessment of groundwater potentiality using geophysical techniques in Wadi Allaqi basin, Eastern Desert, Egypt—Case study. NRIAG Journal of Astronomy and Geophysics, 6(2), 408–421. https://doi.org/10.1016/j.nrjag.2017.09.003.

    Article  Google Scholar 

  • Hong, H., Gu, Y., Li, R., Zhang, K., & Li, Z. (2010). Clay mineralogy and geochemistry and their palaeoclimatic interpretation of the Pleistocene deposits in the Xuancheng section, southern China. Journal of Quaternary Science, 25(5), 662–674. https://doi.org/10.1002/jqs.1340.

    Article  Google Scholar 

  • Hong, H., Li, Z., Yang, M., Xiao, P., & Xue, H. (2009). Kaolin in the net-like horizon of laterite in Hubei, south China. Clay Minerals, 44(1), 51–66. https://doi.org/10.1180/claymin.2009.044.1.51.

    Article  Google Scholar 

  • Idziak, A. F., & Dubiel, R. (2011). Geophysics in mining and environmental protection. Berlin: Springer. https://doi.org/10.1007/978-3-642-19062-9.

    Book  Google Scholar 

  • Jahn, R., Blume, H. P., Asio, V. B., Spaargaren, O., & Schad, P. (2006). Guidelines for soil description. Quebec City: FAO.

    Google Scholar 

  • Jarvis, N. J., Moeys, J., Koestel, J., & Hollis, J. M. (2012). Preferential flow in a pedological perspective. Hydropedology: Synergistic Integration of Soil Science and Hydrology (pp. 75–120). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-386941-8.00003-4.

    Chapter  Google Scholar 

  • Keller, W. D. (1963). The origin of high-alumina clay minerals—a review. Clays and Clay Minerals, 12(1), 129–151.

    Article  Google Scholar 

  • King, L. C. (1956). A geomorfologia do Brasil Oriental. Revista Brasileira De Geografia, 2, 1–147. Retrieved from https://biblioteca.ibge.gov.br/visualizacao/periodicos/115/rbg_1956_v18_n2.pdf.

  • Lee, S., Yeo, I.-Y., Lang, M. W., Sadeghi, A. M., McCarty, G. W., Moglen, G. E., et al. (2018). Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules. Journal of Environmental Management, 223(May), 37–48. https://doi.org/10.1016/j.jenvman.2018.06.006.

    Article  Google Scholar 

  • Lin, H., Vogel, H. J., Phillips, J., & Fath, B. D. (2015). Complexity of soils and hydrology in ecosystems. Ecological Modelling, 298, 1–3. https://doi.org/10.1016/j.ecolmodel.2014.11.016.

    Article  Google Scholar 

  • Loke, M. H. (2003). Rapid 2D resistivity & IP inversion using the least-squares method (p. 122). Manual: Geotomo Software.

    Google Scholar 

  • Loke, M. H., Acworth, I., & Dahlin, T. (2001). A comparison of smooth and blocky inversion methods in 2-D electrical imaging surveys. ASEG Extended Abstracts, 2001(1), 1–4.

    Article  Google Scholar 

  • Loke, Meng Heng, & Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44(1), 131–152.

    Article  Google Scholar 

  • Ma, Y., Li, X., Guo, L., & Lin, H. (2017). Hydropedology: Interactions between pedologic and hydrologic processes across spatiotemporal scales. Earth-Science Reviews, 171(19), 181–195. https://doi.org/10.1016/j.earscirev.2017.05.014.

    Article  Google Scholar 

  • McLachlan, P. J., Chambers, J. E., Uhlemann, S. S., & Binley, A. (2017). Geophysical characterisation of the groundwater–surface water interface. Advances in Water Resources, 109, 302–319. https://doi.org/10.1016/j.advwatres.2017.09.016.

    Article  Google Scholar 

  • Melfi, A. J. (1997). Brazilian bauxite deposits: a review. In A. J. Carvalho, A. Boulangé, B. Melfi, & Y. Lucas (Eds.), Brazilan bauxites (pp. 3–22). Sao Paulo, Paris: USP-FAPESP-ORSTOM.

    Google Scholar 

  • Miller, A. J., & Zégre, N. P. (2014). Mountaintop removal mining and catchment hydrology. Water (Switzerland), 6(3), 472–499. https://doi.org/10.3390/w6030472.

    Article  Google Scholar 

  • Montes, C. R., Melfi, A. J., Carvalho, A., Vieira-Coelho, A. C., & Formoso, M. L. L. (2002). Genesis, mineralogy and geochemistry of kaolin deposits of the Jari River, Amapá State, Brazil. Clays and Clay Minerals, 50(4), 494–503. https://doi.org/10.1346/000986002320514217.

    Article  Google Scholar 

  • Moreira, C. A., Paes, R. A. S., Ilha, L. M., & da Cruz Bittencourt, J. (2018). Reassessment of copper mineral occurrence through electrical tomography and pseudo 3D modeling in Camaquã Sedimentary Basin, Southern Brazil. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-2019-2.

    Article  Google Scholar 

  • Moreira, C. A., Reis, S. S., Filho, W. M., & Hansen, M. A. F. (2017). Geoelectric Modeling of Supergenic Manganese Ocurrence in Heliodora Region, Southern Minas Gerais. Revista Brasileira de Geofísica, 34(3), 299–308. https://doi.org/10.22564/rbgf.v34i3.833.

    Article  Google Scholar 

  • Munsell, A. H. (2000). Munsell soil color charts Munsell Color. Michigan: GretagMacbeth.

    Google Scholar 

  • Mussett, A. E., & Khan, M. A. (2000). Looking into the earth: an introduction to geological geophysics. New York: Cambridge University Press.

    Book  Google Scholar 

  • Nahon, D. B. (1991a). Introduction to the petrology of soils and chemical weathering. New York: Wiley.

    Google Scholar 

  • Nahon, D. B. (1991b). Self-organization in chemical lateritic weathering. Geoderma, 51(1–4), 5–13. https://doi.org/10.1016/0016-7061(91)90063-Y.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717.

    Article  Google Scholar 

  • Parsekian, A. D., Singha, K., Minsley, B. J., Holbrook, W. S., & Slater, L. (2015). Multiscale geophysical imaging of the critical zone. Reviews of Geophysics, 53, 1–26. https://doi.org/10.1002/2016RG000526.

    Article  Google Scholar 

  • Pennock, D., Bedard-Haughn, A., Kiss, J., & van der Kamp, G. (2014). Application of hydropedology to predictive mapping of wetland soils in the Canadian Prairie Pothole Region. Geoderma, 235–236, 199–211. https://doi.org/10.1016/j.geoderma.2014.07.008.

    Article  Google Scholar 

  • Pessenda, L. C. R., Gouveia, S. E. M., Ribeiro, A. S., De Oliveira, P. E., & Aravena, R. (2010). Late Pleistocene and Holocene vegetation changes in northeastern Brazil determined from carbon isotopes and charcoal records in soils. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(3–4), 597–608. https://doi.org/10.1016/j.palaeo.2010.09.008.

    Article  Google Scholar 

  • Phillips, J. D. (2015). The robustness of chronosequences. Ecological Modelling, 298, 16–23. https://doi.org/10.1016/j.ecolmodel.2013.12.018.

    Article  Google Scholar 

  • Queiroz, A. T. (2012). Análise e avaliação da demanda e da disponibilidade hídrica nos alto e médio curso do Rio Uberabinha e o abastecimento público em Uberlândia (MG). Uberlândia: Universidade Federal de Uberlândia.

    Google Scholar 

  • Redhaounia, B., Ilondo, B. O., Gabtni, H., Sami, K., & Bédir, M. (2016). Electrical Resistivity Tomography (ERT) applied to Karst carbonate aquifers: case study from Amdoun, northwestern Tunisia. Pure and Applied Geophysics, 173(4), 1289–1303.

    Article  Google Scholar 

  • Reyes-López, J. A., Ramírez-Hernández, J., Lázaro-Mancilla, O., Carreón-Diazconti, C., & Garrido, M. M.-L. (2008). Assessment of groundwater contamination by landfill leachate: A case in México. Waste Management, 28, S33–S39.

    Article  Google Scholar 

  • Rosolen, V., Bueno, G. T., Mutema, M., Moreira, C. A., Junior, I. R. F., Nogueira, G., et al. (2019). On the link between soil hydromorphy and geomorphological development in the Cerrado (Brazil) wetlands. CATENA, 176(October 2018), 197–208. https://doi.org/10.1016/j.catena.2019.01.022.

    Article  Google Scholar 

  • Rubin, Y., & Hubbard, S. S. (Eds.). (2006). Hydrogeophysics. Dordrecht: Springer.

    Google Scholar 

  • Salgado-Laboriau, M. L., Barberi, M., Ferraz-Vicentini, K. R., & Parizzi, M. G. (1998). A dry climatic event during the late Quaternary of tropical Brazil. Review of Palaeobotany and Palynology, 99, 115–129.

    Article  Google Scholar 

  • Sidle, R. C., Gomi, T., Usuga, J. C. L., & Jarihani, B. (2017). Hydrogeomorphic processes and scaling issues in the continuum from soil pedons to catchments. Earth-Science Reviews, 175, 75–96. https://doi.org/10.1016/j.earscirev.2017.10.010.

    Article  Google Scholar 

  • Tardy, Y. (1993). Pétrologie des latérites et des sols tropicaux. Paris: Masson. ISBN 2-225-84176-4

  • Tardy, Y., & Nahon, D. B. (1985). Geochemistri of laterites, stability of Al-goethite, Al-hematite, and Fe + -kaolinite in bauxites and ferricretes: an approach to the mechanism of concretion fromation. American Journal of Science, 285, 865–903.

    Article  Google Scholar 

  • Tost, M., Hitch, M., Chandurkar, V., Moser, P., & Feiel, S. (2018). The state of environmental sustainability considerations in mining. Journal of Cleaner Production, 182, 969–977. https://doi.org/10.1016/j.jclepro.2018.02.051.

    Article  Google Scholar 

  • Vepraskas, M. J., & Lindbo, D. L. (2012). Redoximorphic features as related to soil hydrology and hydric soils. Hydropedology: Synergistic Integration of Soil Science and Hydrology (pp. 143–172). Oxford: Elsevier. https://doi.org/10.1016/b978-0-12-386941-8.00005-8.

    Chapter  Google Scholar 

  • Vieira, L. B., Moreira, C. A., Côrtes, A. R. P., & Luvizotto, G. L. (2016). Geophysical modeling of the manganese deposit for Induced Polarization method in Itapira (Brazil). Geofisica Internacional, 55(2), 107–117.

    Google Scholar 

  • Zhang, G., Zhang, G. B., Chen, C., Chang, P. Y., Wang, T. P., Yen, H. Y., et al. (2016). Imaging rainfall infiltration processes with the time-lapse electrical resistivity imaging method. Pure and Applied Geophysics, 173(6), 2227–2239. https://doi.org/10.1007/s00024-016-1251-x.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank FAPESP (Processes n° 2014/01131-4 and 2017/14168-1) for provided the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. S. Coelho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, C.V.S., Moreira, C.A., Rosolen, V. et al. Analyzing the Spatial Occurrence of High-Alumina Clays (Brazil) Using Electrical Resistivity Tomography (ERT). Pure Appl. Geophys. 177, 3943–3960 (2020). https://doi.org/10.1007/s00024-020-02444-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02444-w

Keywords

Navigation