Skip to main content
Log in

Seasonal Sea Surface Temperature Variability over Tropical Indo-Pacific Region Simulated by FIO-ESM Model Under Global Warming

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The long-term trend and seasonal variability of sea surface temperature (SST) over tropical Indo-Pacific region under the global warming projection simulated by FIO-ESM model are analyzed. At seasonal time scale, significant warming trend over Indo-Pacific area is well captured by FIO-ESM model over the warm pool region under RCP8.5 scenario. The La Niña-like warming pattern is dominant in the tropical Pacific and the negative Indian Ocean Dipole warming pattern takes place in the Indian Ocean in global warming projection separately. The strength of SST warming trend is found to be seasonal dependent over Indo-Pacific region. The spatial distribution of calendar month where fastest/slowest SST warming trend take place in tropical Indo-Pacific has been assessed in FIO-ESM simulation, which is corresponded with the distribution of SST climatology closely in Pacific but not in Indian Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen, S. K., Plattner, G. K., Nauels, A., Xia, Y., & Stocker, T. F. (2007). Climate change 2013: the physical science basis. An overview of the working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate change (IPCC). Computational Geometry, 18(2), 95–123.

    Google Scholar 

  • Bellenger, H., Guilyardi, E., Leloup, J., et al. (2014). ENSO representation in climate models: from CMIP3 to CMIP5. Climate Dynamics, 42(7–8), 1999–2018.

    Article  Google Scholar 

  • Cai, W., Borlace, S., Lengaigne, M., et al. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4, 111–116.

    Article  Google Scholar 

  • Cane, M. A., Clement, A. C., Kaplan, A., et al. (1997). Twentieth-Century sea surface temperature trends. Science, 275(5302), 957–960.

    Article  Google Scholar 

  • Chiang, J. C., & Friedman, A. R. (2012). Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annual Review of Earth and Planetary Sciences, 40(1), 383–412.

    Article  Google Scholar 

  • Collins, W. D., Rasch, P. J., Boville, B. A., et al. (2006). The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). Journal of Climate, 19(11), 2144–2161.

    Article  Google Scholar 

  • De Deckker, P. (2016). The Indo-Pacific Warm Pool: Critical to world oceanography and world climate. Geoscience Letters, 3(1), 20.

    Article  Google Scholar 

  • Dickinson, R. E., Oleson, K. W., Bonan, G., et al. (2006). The community land model and its climate statistics as a component of the community climate system model. Journal of Climate, 19(11), 2302–2324.

    Article  Google Scholar 

  • Grose, M. R., Brown, J. N., Narsey, S., et al. (2014). Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. International Journal of Climatology, 34, 3382–3399.

    Article  Google Scholar 

  • Huang, P., & Ying, J. (2015). A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. Journal of Climate, 28(12), 4706–4723.

    Article  Google Scholar 

  • Hunke, E. C., Lipscomb, W. H., et al. (2008). CICE: The Los Alamos sea ice model. Documentation and software user’s manual. Version 4.0, Technology Reports. LA-CC-06–012, T-3 Fluid Dynamic Group, Los Alamos National Laboratory, Los Alamos, New Mexico. Available online at http://www.ccsm.ucar.edu/models/ccsm4.0/ccsmdoc/book1.html.

  • Kim, S. T., & Yu, J. (2012). The two types of ENSO in CMIP5 models. Geophysical Research Letters, 39(11), 221–228.

    Google Scholar 

  • Kohyama, T., Hartmann, D. L., & Battisti, D. S. (2017). La Niña-like mean-state response to global warming and potential oceanic roles. Journal of Climate, 30(11), 4207–4225.

    Article  Google Scholar 

  • Liu, L., Xie, S.-P., Zheng, X.-T., et al. (2014). Indian Ocean variability in the CMIP5 multi-model ensemble: the zonal dipole mode. Climate Dynamics. https://doi.org/10.1007/s00382-013-2000-9.

    Article  Google Scholar 

  • Liu, L., Yu, W., & Li, T. (2011). Dynamic and thermodynamic air-sea coupling associated with the indian ocean dipole diagnosed from 23WCRP CMIP3 models. Journal of Climate, 24(18), 4942–4958.

    Article  Google Scholar 

  • Oleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., et al. (2008). Improvements to the community land model and their impact on the hydrological cycle. Journal of Geophysical Research, 113(G1), G01021.

    Article  Google Scholar 

  • Qiao, F., Song, Z., Bao, Y., et al. (2013). Development and evaluation of an Earth System Model with surface gravity waves. Journal of Geophysical Research: Oceans, 118(9), 4514–4524.

    Google Scholar 

  • Qiao, F., Yuan, Y., Yang, Y., Zheng, Q., Xia, C., & Ma, J. (2004). Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model. Geophysical Research Letters. https://doi.org/10.1029/2004GL019824.

    Article  Google Scholar 

  • Smith, R., Jones, P. W., et al. (2010). The Parallel Ocean Program (POP) reference manual, ocean component of the community climate system model (CCSM). Los Alamos National Laboratory Technology Reports. LAUR-10-01853. Available online at http://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRef-Manual.pdf.

  • Song, Z., Qiao, F., & Song, Y. (2012). Response of the equatorial basin-wide sst to non-breaking surface wave-induced mixing in a climate model: An amendment to tropical bias. Journal of Geophysical Research, 117, C00J26.

    Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experimental design. American Meteorological Society, 93(4), 485–498.

    Article  Google Scholar 

  • Vecchi, G. A., Clement, A., & Soden, B. J. (2008). Examining the tropical pacific’s response to global warming. Eos Transactions American Geophysical Union, 89(9), 81–83.

    Article  Google Scholar 

  • Weller, E., Min, S. K., Cai, W., Zwiers, F. W., Kim, Y. H., & Lee, D. (2016). Human-caused Indo-Pacific warm pool expansion. Science Advances, 2(7), e1501719.

    Article  Google Scholar 

  • Xie, S. P., Deser, C., Vecchi, G. A., Collins, M., Delworth, T. L., Hall, A., et al. (2015). Towards predictive understanding of regional climate change. Nature Climate Change, 5, 921–930.

    Article  Google Scholar 

  • Xie, S. P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., & Wittenberg, A. T. (2010). Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate, 23(4), 966–986.

    Article  Google Scholar 

  • Yang, Y., Qiao, F., Zhao, W., Teng, Y., & Yuan, Y. (2005). MASNUM ocean wave numerical model in spherical coordinates and its application. Acta Oceanologica Sinica, 27(2), 1–7.

    Google Scholar 

  • Ying, J., Huang, P., & Huang, R. H. (2016). Evaluating the formation mechanisms of the equatorial Pacific SST warming pattern in CMIP5 models. Advances in Atmospheric Sciences, 33(4), 433–441.

    Article  Google Scholar 

  • Zhang, W., & Jin, F. F. (2012). Improvements in the CMIP5 simulations of ENSO-SSTA meridional width. Geophysical Research Letters, 39(23), L23704.

    Google Scholar 

  • Zhao, Y. D., Yin, X. Q., Song, Y. J., & Qiao, F. (2019). Seasonal prediction skills of FIO-ESM for North Pacific sea surface temperature and precipitation. Acta Oceanologica Sinica, 38(1), 5–12. https://doi.org/10.1007/s13131-019-1366-x.

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by National Key R&D Program of China (2017YFC1405100), Basic Scientific Fund for National Public Research Institutes of China (2017S02), Natural Science Foundation of China Grants (41876028), Global Change and Air-Sea Interaction Program (GASI-IPOVAI-03, GASI-IPOVAI-02, GASI-IPOVAI-06, GASI-02-IND-STSaut, and GASI-02-IND-STSwin), Taishan Scholars Programs of Shandong Province (No. tsqn201909165), Indian Ocean Ninety-east Ridge Ecosystem and Marine Environment Monitoring and Protection, the China Ocean Mineral Resources R & D Association (Contact No. DY135-E2-4), and NSFC-Shandong Joint Fund for Marine Science Research Centers (U1606405). This work was also supported by Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, L. & Song, Y. Seasonal Sea Surface Temperature Variability over Tropical Indo-Pacific Region Simulated by FIO-ESM Model Under Global Warming. Pure Appl. Geophys. 177, 4045–4056 (2020). https://doi.org/10.1007/s00024-020-02439-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02439-7

Keywords

Navigation