Skip to main content

Simulating Hydraulic Fracturing: Failure in Soft Versus Hard Rocks

Abstract

In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young’s Modulus and breaking strength. Our simulations indicate that the Young’s Modulus has the largest influence on the fracture dynamics and the related seismicity. Simulations of rocks with a Young’s modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young’s modulus. Simulations of rocks with a Young’s modulus higher than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young’s modulus that lies in the middle of possible values for natural shale rocks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  • Aki, K., & Richards, P. G. (2002). Quantitative seismology. Sausalito: University Science Books.

    Google Scholar 

  • Anderson, T. L. (2005). Fracture mechanics: Fundamentals and applications. Boca Raton: CRC Press LLC.

    Google Scholar 

  • Baria, R., Baumgärtner, J., Rummel, F., Pine, R. J., & Sato, Y. (1999). HDR/HWR reservoirs: Concepts, understanding and creation. Geothermics,28(4), 533–552.

    Google Scholar 

  • Bons, P., Koehn, D., & Jessell, M. W. (2007). Microdynamics simulation. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Carman, P. C. (1937). Fluid flow through granular beds. Transactions of the Institution of Chemical Engineers,15, 150–166.

    Google Scholar 

  • Clément, C., Toussaint, R., Stojanova, M., & Aharonov, E. (2018). Sinking during earthquakes: Critical acceleration criteria control drained soil liquefaction. Physical Review E,97(2), 022905.

    Google Scholar 

  • Cobbold, P. R., & Rodrigues, N. (2007). Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (‘beef’and ‘cone-in-cone’). Geofluids,7(3), 313–322.

    Google Scholar 

  • Detournay, E., & Cheng A. H. D. (1993). Fundamentals of poroelasticity1. In Chapter 5 in Comprehensive Rock Engineering: Principles, Practice and Projects (vol. II, pp. 113–171).

  • Eriksen, F. K., Toussaint, R., Turquet, A. L., Måløy, K. J., & Flekkøy, E. G. (2017). Pneumatic fractures in confined granular media. Physical Review E,95(6), 062901.

    Google Scholar 

  • Eriksen, F. K., Toussaint, R., Turquet, A. L., Måløy, K. J., & Flekkøy, E. G. (2018). Pressure evolution and deformation of confined granular media during pneumatic fracturing. Physical Review E,97(1), 012908.

    Google Scholar 

  • Flekkøy, E. G., Malthe-Sørenssen, A., & Jamtveit, B. (2002). Modeling hydrofracture. Journal of Geophysical Research: Solid Earth,107(B8), ECV-1.

    Google Scholar 

  • Fyfe, W. S. (2012). Fluids in the earth’s crust: Their significance in metamorphic, tectonic and chemical transport process. Amsterdam: Elsevier.

    Google Scholar 

  • Ghani, I., Koehn, D., & Toussaint, R. (2015). Dynamics of hydrofracturing and permeability evolution in layered reservoirs. Frontiers in Physics,3, 67.

    Google Scholar 

  • Ghani, I., Koehn, D., Toussaint, R., & Passchier, C. W. (2013). Dynamic development of hydrofracture. Pure and Applied Geophysics,170(11), 1685–1703. https://doi.org/10.1007/s00024-012-0637-7.

    Article  Google Scholar 

  • Griffith, A. A. (1921). The phenomena of rupture and flow in solids. In Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character (vol. 221, pp. 163–198).

  • Groenenboom, J., & van Dam, D. B. (2000). Monitoring hydraulic fracture growth: Laboratory experiments. Geophysics,65(2), 603–611.

    Google Scholar 

  • Guest, A., & Settari A. (2010). Relationship between the hydraulic fracture and observed microseismicity in the bossier sands, Texas. Paper presented at Canadian Unconventional Resources and International Petroleum Conference, Society of Petroleum Engineers.

  • Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth,84(B5), 2348–2350. https://doi.org/10.1029/JB084iB05p02348.

    Article  Google Scholar 

  • Hazzard, J. F., & Young, R. P. (2002). Moment tensors and micromechanical models. Tectonophysics,356(1), 181–197.

    Google Scholar 

  • Hubbert, M. K., & Rubey, W. W. (1959). Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geological Society of America Bulletin,70(2), 115–166.

    Google Scholar 

  • Inglis, C. (1913). Stress in a plate due to the presence of sharp corners and cracks. Transactions of the Royal Institution of Naval Architects,60, 219–241.

    Google Scholar 

  • Irwin, G. R. (1953). The effect of size upon fracturing. ASTM STP,158, 176–194.

    Google Scholar 

  • Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 24, 361–364.

    Google Scholar 

  • Johnsen, Ø., Toussaint, R., Måløy, K. J., & Flekkøy, E. G. (2006). Pattern formation during air injection into granular materials confined in a circular Hele-Shaw cell. Physical Review E,74(1), 011301.

    Google Scholar 

  • Koehn, D., Arnold, J., Jamtveit, B., & Malthe-Sørenssen, A. (2003). Instabilities in stress corrosion and the transition to brittle failure. American Journal of Science, 303(10), 956–971.

    Google Scholar 

  • Koehn, D., Ebner, M., Renard, F., Toussaint, R., & Passchier, C. W. (2012). Modelling of stylolite geometries and stress scaling. Earth and Planetary Science Letters, 341, 104–113.

    Google Scholar 

  • Mory, M. (2013). Fluid mechanics for chemical engineering. Amsterdam: Wiley.

    Google Scholar 

  • Murphy, S., O’Brien, G., McCloskey, J., Bean, C. J., & Nalbant, S. (2013). Modelling fluid induced seismicity on a nearby active fault. Geophysical Journal International,194(3), 1613–1624.

    Google Scholar 

  • Niebling, M. J., Flekkøy, E. G., Måløy, K. J., & Toussaint, R. (2010a). Sedimentation instabilities: Impact of the fluid compressibility and viscosity. Physical Review E,82(5), 051302.

    Google Scholar 

  • Niebling, M. J., Flekkøy, E. G., Måløy, K. J., & Toussaint, R. (2010b). Mixing of a granular layer falling through a fluid. Physical Review E,82(1), 011301.

    Google Scholar 

  • Niebling, M. J., Toussaint, R., Flekkøy, E. G., & Måløy, K. J. (2012). Dynamic aerofracture of dense granular packings. Physical Review E,86(6), 061315.

    Google Scholar 

  • Nordgren, R. (1972). Propagation of a vertical hydraulic fracture. Society of Petroleum Engineers Journal,12(04), 306–314.

    Google Scholar 

  • Ohta, A., Suzuki, N., & Mawari, T. (1992). Effect of Young’s modulus on basic crack propagation properties near the fatigue threshold. International Journal of Fatigue,14(4), 224–226.

    Google Scholar 

  • Parez, S., Aharonov, E., & Toussaint, R. (2016). Unsteady granular flows down an inclined plane. Physical Review E,93(4), 042902.

    Google Scholar 

  • Pearson, C. (1981). The relationship between microseismicity and high pore pressures during hydraulic stimulation experiments in low permeability granitic rocks. Journal of Geophysical Research: Solid Earth,86(B9), 7855–7864.

    Google Scholar 

  • Prasad, M., Kopycinska, M., Rabe, U., & Arnold, W. (2002). Measurement of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophysical Research Letters,29(8), 13.

    Google Scholar 

  • Rutqvist, J., Rinaldi, A. P., Cappa, F., & Moridis, G. J. (2013). Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs. Journal of Petroleum Science and Engineering,107, 31–44.

    Google Scholar 

  • Sachau, T., Bons, P. D., & Gomez-Rivas, E. (2015). Transport efficiency and dynamics of hydraulic fracture networks. Frontiers in Physics,3, 63.

    Google Scholar 

  • Sachau, T., & Koehn, D. (2014). A new mixed-mode fracture criterion for large-scale lattice models. Geoscientific Model Development,7(1), 243–247.

    Google Scholar 

  • Sachpazis, C. (1990). Correlating Schmidt hardness with compressive strength and Young’s modulus of carbonate rocks. Bulletin of the International Association of Engineering Geology-Bulletin de l’Association Internationale de Géologie de l’Ingénieur,42(1), 75–83.

    Google Scholar 

  • Sayers, C. M. (2013). The effect of anisotropy on the Young’s moduli and Poisson’s ratios of shales. Geophysical Prospecting,61(2), 416–426.

    Google Scholar 

  • Scott Jr, T., Zeng Z. W., & Roegiers J. C. (2000). Acoustic emission imaging of induced asymmetrical hydraulic fractures. Paper presented at 4th North American rock mechanics symposium, American Rock Mechanics Association.

  • Sun, C. T., & Jin, Z. H. (2012). Fracture mechanics. Boston: Academic Press. https://doi.org/10.1016/B978-0-12-385001-0.00012-2.

    Book  Google Scholar 

  • Tandaiya, P., Ramamurty, U., Ravichandran, G., & Narasimhan, R. (2008). Effect of Poisson’s ratio on crack tip fields and fracture behavior of metallic glasses. Acta Materialia,56(20), 6077–6086.

    Google Scholar 

  • Urbancic, T., Shumila V., Rutledge J., & Zinno R. (1999). Determining hydraulic fracture behavior using microseismicity. Paper presented at Vail Rocks 1999, The 37th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association.

  • Valko, P., & Economides, M. (1995). Hydraulic fracture mechanics (Vol. 28). New York: Wiley.

    Google Scholar 

  • Vavryčuk, V. (2011). Tensile earthquakes: Theory, modeling, and inversion. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2011JB008770.

    Article  Google Scholar 

  • Vinningland, J. L., Johnsen, Ø., Flekkøy, E. G., Toussaint, R., & Måløy, K. J. (2007). Granular Rayleigh-Taylor instability: Experiments and simulations. Physical Review Letters,99(4), 048001.

    Google Scholar 

  • Vinningland, J. L., Toussaint, R., Niebling, M., Flekkøy, E. G., & Måløy, K. J. (2012). Family-Vicsek scaling of detachment fronts in granular Rayleigh-Taylor instabilities during sedimentating granular/fluid flows. The European Physical Journal Special Topics,204(1), 27–40.

    Google Scholar 

  • von Terzaghi, K. (1925). Principles of soil mechanics. Engineering News-Record,95, 19–32.

    Google Scholar 

  • Warpinski, N. R., Steinfort T. D., Branagan P. T., & Wilmer R. H. (1999). Apparatus and method for monitoring underground fracturing, U.S. Patent No. 5,934,373. Washington, DC: U.S. Patent and Trademark Office.

  • Zeev, S. B., Goren, L., Parez, S., Toussaint, R., Clement, C., & Aharonov, E. (2017). The combined effect of buoyancy and excess pore pressure in facilitating soil liquefaction. In Poromechanics VI (pp. 107–116).

  • Zoback, M. D., & Harjes, H. P. (1997). Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site. Germany, Journal of Geophysical Research: Solid Earth,102(B8), 18477–18491.

    Google Scholar 

Download references

Acknowledgements

We would like to extend our gratitude to Natural Environment Research Council (NERC) and especially to NERC Center for Doctoral Training in Oil & Gas for provided funding of the project within which this research has been carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janis Aleksans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aleksans, J., Koehn, D., Toussaint, R. et al. Simulating Hydraulic Fracturing: Failure in Soft Versus Hard Rocks. Pure Appl. Geophys. 177, 2771–2789 (2020). https://doi.org/10.1007/s00024-019-02376-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02376-0

Keywords

  • Hydrofracturing
  • numerical modelling
  • Young’s modulus
  • microseismicity