Aki, K., & Richards, P. G. (2002). Quantitative seismology. Sausalito: University Science Books.
Google Scholar
Anderson, T. L. (2005). Fracture mechanics: Fundamentals and applications. Boca Raton: CRC Press LLC.
Google Scholar
Baria, R., Baumgärtner, J., Rummel, F., Pine, R. J., & Sato, Y. (1999). HDR/HWR reservoirs: Concepts, understanding and creation. Geothermics,28(4), 533–552.
Google Scholar
Bons, P., Koehn, D., & Jessell, M. W. (2007). Microdynamics simulation. Berlin: Springer Science & Business Media.
Google Scholar
Carman, P. C. (1937). Fluid flow through granular beds. Transactions of the Institution of Chemical Engineers,15, 150–166.
Google Scholar
Clément, C., Toussaint, R., Stojanova, M., & Aharonov, E. (2018). Sinking during earthquakes: Critical acceleration criteria control drained soil liquefaction. Physical Review E,97(2), 022905.
Google Scholar
Cobbold, P. R., & Rodrigues, N. (2007). Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (‘beef’and ‘cone-in-cone’). Geofluids,7(3), 313–322.
Google Scholar
Detournay, E., & Cheng A. H. D. (1993). Fundamentals of poroelasticity1. In Chapter 5 in Comprehensive Rock Engineering: Principles, Practice and Projects (vol. II, pp. 113–171).
Eriksen, F. K., Toussaint, R., Turquet, A. L., Måløy, K. J., & Flekkøy, E. G. (2017). Pneumatic fractures in confined granular media. Physical Review E,95(6), 062901.
Google Scholar
Eriksen, F. K., Toussaint, R., Turquet, A. L., Måløy, K. J., & Flekkøy, E. G. (2018). Pressure evolution and deformation of confined granular media during pneumatic fracturing. Physical Review E,97(1), 012908.
Google Scholar
Flekkøy, E. G., Malthe-Sørenssen, A., & Jamtveit, B. (2002). Modeling hydrofracture. Journal of Geophysical Research: Solid Earth,107(B8), ECV-1.
Google Scholar
Fyfe, W. S. (2012). Fluids in the earth’s crust: Their significance in metamorphic, tectonic and chemical transport process. Amsterdam: Elsevier.
Google Scholar
Ghani, I., Koehn, D., & Toussaint, R. (2015). Dynamics of hydrofracturing and permeability evolution in layered reservoirs. Frontiers in Physics,3, 67.
Google Scholar
Ghani, I., Koehn, D., Toussaint, R., & Passchier, C. W. (2013). Dynamic development of hydrofracture. Pure and Applied Geophysics,170(11), 1685–1703. https://doi.org/10.1007/s00024-012-0637-7.
Article
Google Scholar
Griffith, A. A. (1921). The phenomena of rupture and flow in solids. In Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character (vol. 221, pp. 163–198).
Groenenboom, J., & van Dam, D. B. (2000). Monitoring hydraulic fracture growth: Laboratory experiments. Geophysics,65(2), 603–611.
Google Scholar
Guest, A., & Settari A. (2010). Relationship between the hydraulic fracture and observed microseismicity in the bossier sands, Texas. Paper presented at Canadian Unconventional Resources and International Petroleum Conference, Society of Petroleum Engineers.
Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth,84(B5), 2348–2350. https://doi.org/10.1029/JB084iB05p02348.
Article
Google Scholar
Hazzard, J. F., & Young, R. P. (2002). Moment tensors and micromechanical models. Tectonophysics,356(1), 181–197.
Google Scholar
Hubbert, M. K., & Rubey, W. W. (1959). Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geological Society of America Bulletin,70(2), 115–166.
Google Scholar
Inglis, C. (1913). Stress in a plate due to the presence of sharp corners and cracks. Transactions of the Royal Institution of Naval Architects,60, 219–241.
Google Scholar
Irwin, G. R. (1953). The effect of size upon fracturing. ASTM STP,158, 176–194.
Google Scholar
Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 24, 361–364.
Google Scholar
Johnsen, Ø., Toussaint, R., Måløy, K. J., & Flekkøy, E. G. (2006). Pattern formation during air injection into granular materials confined in a circular Hele-Shaw cell. Physical Review E,74(1), 011301.
Google Scholar
Koehn, D., Arnold, J., Jamtveit, B., & Malthe-Sørenssen, A. (2003). Instabilities in stress corrosion and the transition to brittle failure. American Journal of Science, 303(10), 956–971.
Google Scholar
Koehn, D., Ebner, M., Renard, F., Toussaint, R., & Passchier, C. W. (2012). Modelling of stylolite geometries and stress scaling. Earth and Planetary Science Letters, 341, 104–113.
Google Scholar
Mory, M. (2013). Fluid mechanics for chemical engineering. Amsterdam: Wiley.
Google Scholar
Murphy, S., O’Brien, G., McCloskey, J., Bean, C. J., & Nalbant, S. (2013). Modelling fluid induced seismicity on a nearby active fault. Geophysical Journal International,194(3), 1613–1624.
Google Scholar
Niebling, M. J., Flekkøy, E. G., Måløy, K. J., & Toussaint, R. (2010a). Sedimentation instabilities: Impact of the fluid compressibility and viscosity. Physical Review E,82(5), 051302.
Google Scholar
Niebling, M. J., Flekkøy, E. G., Måløy, K. J., & Toussaint, R. (2010b). Mixing of a granular layer falling through a fluid. Physical Review E,82(1), 011301.
Google Scholar
Niebling, M. J., Toussaint, R., Flekkøy, E. G., & Måløy, K. J. (2012). Dynamic aerofracture of dense granular packings. Physical Review E,86(6), 061315.
Google Scholar
Nordgren, R. (1972). Propagation of a vertical hydraulic fracture. Society of Petroleum Engineers Journal,12(04), 306–314.
Google Scholar
Ohta, A., Suzuki, N., & Mawari, T. (1992). Effect of Young’s modulus on basic crack propagation properties near the fatigue threshold. International Journal of Fatigue,14(4), 224–226.
Google Scholar
Parez, S., Aharonov, E., & Toussaint, R. (2016). Unsteady granular flows down an inclined plane. Physical Review E,93(4), 042902.
Google Scholar
Pearson, C. (1981). The relationship between microseismicity and high pore pressures during hydraulic stimulation experiments in low permeability granitic rocks. Journal of Geophysical Research: Solid Earth,86(B9), 7855–7864.
Google Scholar
Prasad, M., Kopycinska, M., Rabe, U., & Arnold, W. (2002). Measurement of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophysical Research Letters,29(8), 13.
Google Scholar
Rutqvist, J., Rinaldi, A. P., Cappa, F., & Moridis, G. J. (2013). Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs. Journal of Petroleum Science and Engineering,107, 31–44.
Google Scholar
Sachau, T., Bons, P. D., & Gomez-Rivas, E. (2015). Transport efficiency and dynamics of hydraulic fracture networks. Frontiers in Physics,3, 63.
Google Scholar
Sachau, T., & Koehn, D. (2014). A new mixed-mode fracture criterion for large-scale lattice models. Geoscientific Model Development,7(1), 243–247.
Google Scholar
Sachpazis, C. (1990). Correlating Schmidt hardness with compressive strength and Young’s modulus of carbonate rocks. Bulletin of the International Association of Engineering Geology-Bulletin de l’Association Internationale de Géologie de l’Ingénieur,42(1), 75–83.
Google Scholar
Sayers, C. M. (2013). The effect of anisotropy on the Young’s moduli and Poisson’s ratios of shales. Geophysical Prospecting,61(2), 416–426.
Google Scholar
Scott Jr, T., Zeng Z. W., & Roegiers J. C. (2000). Acoustic emission imaging of induced asymmetrical hydraulic fractures. Paper presented at 4th North American rock mechanics symposium, American Rock Mechanics Association.
Sun, C. T., & Jin, Z. H. (2012). Fracture mechanics. Boston: Academic Press. https://doi.org/10.1016/B978-0-12-385001-0.00012-2.
Book
Google Scholar
Tandaiya, P., Ramamurty, U., Ravichandran, G., & Narasimhan, R. (2008). Effect of Poisson’s ratio on crack tip fields and fracture behavior of metallic glasses. Acta Materialia,56(20), 6077–6086.
Google Scholar
Urbancic, T., Shumila V., Rutledge J., & Zinno R. (1999). Determining hydraulic fracture behavior using microseismicity. Paper presented at Vail Rocks 1999, The 37th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association.
Valko, P., & Economides, M. (1995). Hydraulic fracture mechanics (Vol. 28). New York: Wiley.
Google Scholar
Vavryčuk, V. (2011). Tensile earthquakes: Theory, modeling, and inversion. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2011JB008770.
Article
Google Scholar
Vinningland, J. L., Johnsen, Ø., Flekkøy, E. G., Toussaint, R., & Måløy, K. J. (2007). Granular Rayleigh-Taylor instability: Experiments and simulations. Physical Review Letters,99(4), 048001.
Google Scholar
Vinningland, J. L., Toussaint, R., Niebling, M., Flekkøy, E. G., & Måløy, K. J. (2012). Family-Vicsek scaling of detachment fronts in granular Rayleigh-Taylor instabilities during sedimentating granular/fluid flows. The European Physical Journal Special Topics,204(1), 27–40.
Google Scholar
von Terzaghi, K. (1925). Principles of soil mechanics. Engineering News-Record,95, 19–32.
Google Scholar
Warpinski, N. R., Steinfort T. D., Branagan P. T., & Wilmer R. H. (1999). Apparatus and method for monitoring underground fracturing, U.S. Patent No. 5,934,373. Washington, DC: U.S. Patent and Trademark Office.
Zeev, S. B., Goren, L., Parez, S., Toussaint, R., Clement, C., & Aharonov, E. (2017). The combined effect of buoyancy and excess pore pressure in facilitating soil liquefaction. In Poromechanics VI (pp. 107–116).
Zoback, M. D., & Harjes, H. P. (1997). Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site. Germany, Journal of Geophysical Research: Solid Earth,102(B8), 18477–18491.
Google Scholar