Skip to main content
Log in

Initializing Cross-Gradients Joint Inversion of Gravity and Magnetic Data with a Bayesian Surrogate Gravity Model

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Cross-gradients joint inversion of gravity and magnetic data is the focus of this work. Cross-gradients are introduced as a constraint in the minimization of a least square functional including the misfits of the available data. We propose to initialize the cross gradients iterations with a surrogate density model. The latter is constructed by means of Bayesian estimation in a low dimensional parameter space. To sample from the posterior, an affine invariant MCMC is also introduced. The proposed methodology is successfully tested on synthetic models consisting of isolated sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aarts, E., & Korst, J. (1988). Simulated annealing and boltzmann machines. New York, NY: Wiley.

    Google Scholar 

  • Bhaskara-Rao, D., Prakash, M. J., & Ramesh-Babu, N. (1990). 3D and 2D modeling of gravity anomalies with variable density contrast. Geophysical Prospecting, 38, 411–422.

    Article  Google Scholar 

  • Bhattacharyya, B. K. (1966). A method for computing the total magnetization vector and the dimensions of a rectangular block-shaped body from magnetic anomalies. Geophysics, 31, 74–96.

    Article  Google Scholar 

  • Christen, A., & Fox, C. (2010). A general purpose sampling algorithm for continuous distributions (the t-walk). Bayesian Analysis, 5(2), 263–281.

    Article  Google Scholar 

  • Fedi, M., Hansen, P. C., & Paoletti, V. (2005). Tutorial: Analysis of depth resolution in potential-field inversion. Geophysics, 70(6), A1–A11. https://doi.org/10.1190/1.2122408.

    Article  Google Scholar 

  • Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. (2013). Emcee: The MCMC Hammer. Publications of the Astronomical Society of the Pacific 125(925). IOP Publishing.

  • Fregoso, E., & Gallardo, L. A. (2009). Cross-gradients joint 3D inversion with applications to gravity and magnetic data. Geophysics, 74(4), L31–L42. https://doi.org/10.1190/1.3119263.

    Article  Google Scholar 

  • Fregoso, E., Gallardo, L. A., & García-Abdeslem, J. (2015). Structural joint inversion coupled with Euler deconvolution of isolated gravity and magnetic anomalies. Geophysics, 80(2), G67–G79.

    Article  Google Scholar 

  • Gallardo L. A., & Meju., M. A. (2004). Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints. Journal of Geophysical Research, 109.

  • Haber, E., & Oldenburg, D. (1997). Joint inversion: A structural approach. Inverse Problems, 13, 63–77.

    Article  Google Scholar 

  • Joulidehsar, F., Moradzadeh, A., & Ardejani, Doulati. (2018). An improved 3D joint inversion method of potential field data using cross-gradient constraint and LSQR method. Pure and Applied Geophysics,. https://doi.org/10.1007/s00024-018-1909-7.

    Article  Google Scholar 

  • Li, Y., & Oldenburg, D. W. (1996). 3-D inversion of magnetic data. Geophysics, 61(2), 394–408.

    Article  Google Scholar 

  • Li, Y., & Oldenburg, D. W. (1998). 3-D inversion of gravity data. Geophysics, 63(1), 109–119.

    Article  Google Scholar 

  • Li, W., & Qian, J. (2016). Joint inversion of gravity and traveltime data using a level-set-based structural parameterization. Geophysics, 81(6), G107–G119.

    Article  Google Scholar 

  • Moorkamp, M. B., Heincke, M. B., Jegen, M., Roberts, A. W., & Hobbs, R. W. (2011). A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184, 477–493. https://doi.org/10.1111/j.1365-246X.2010.04856.x.

    Article  Google Scholar 

  • Moorkamp, M., Roberts, A. W., Jegen, M., Heincke, B., & Hobbs, R. W. (2013). Verification of velocity-resistivity relationships derived from structural joint inversion with borehole data. Geophysical Research Letters, 40, 3596–3601. https://doi.org/10.1002/grl.50696.

    Article  Google Scholar 

  • Nielsen, L., & Jacobsen, B. H. (2000). Integrated gravity and wide-angle seismic inversion for two-dimensional crustal modelling. Geophysical Journal International, 140, 222–232. https://doi.org/10.1046/j.1365-246x.2000.00012.x.

    Article  Google Scholar 

  • Paoletti, V., Hansen, P. C., Hansen, M. F., & Fedi, M. (2014). A computationally efficient tool for assessing the depth resolution in large-scale potential-field inversion. Geophysics, 79(4), A33–A38. https://doi.org/10.1190/GEO2014-0017.1.

    Article  Google Scholar 

  • Pilkington, M. (2012). Analysis of gravity gradiometer inverse problems using optimal design measures. Geophysics, 77(2), G25–G31. https://doi.org/10.1190/geo2011-0317.1.

    Article  Google Scholar 

  • Robert, C., & Casella, G. (2013). Monte Carlo statistical methods. New York: Springer Science & Business Media.

    Google Scholar 

  • Sambridge, M., & Mosegaard, K. (2002). Monte Carlo methods in geophyisical inverse problems. Reviews of Geophysics, 40(3), 3-1.

    Article  Google Scholar 

  • Stuart, A. M. (2010). Inverse problems: A Bayesian perspective. Acta Numerica, 19, 451–559.

    Article  Google Scholar 

  • Tarantola, A., & Valette, B. (1982). Generalized non-linear inverse problems solved using the least-squares criterion. Reviews of Geophysics and Space Physics, 20, 219–232.

    Article  Google Scholar 

Download references

Acknowledgements

This research was carried out while M. A. Moreles was a on sabbatical leave at the mathematics Department of the Universidad de Guadalajara. Their hospitality is greatly appreciated. Also, M. A. Moreles would like to acknowledge the support of ECOS-NORD project number 000000000263116/M15M01. The authors wish to thank the anonymous referees. The manuscript was greatly improved by their very constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Moreles.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fregoso, E., Palafox, A. & Moreles, M.A. Initializing Cross-Gradients Joint Inversion of Gravity and Magnetic Data with a Bayesian Surrogate Gravity Model. Pure Appl. Geophys. 177, 1029–1041 (2020). https://doi.org/10.1007/s00024-019-02334-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02334-w

Keywords

Navigation