Skip to main content
Log in

Tsunami Run-Up on a Plane Beach in a Tidal Environment

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We analytically solve the nonlinear shallow water theory for the tsunami run-up on a plane beach in the presence of tide and show that over a plane beach the tide in the nearshore zone can be considered static (uniform in space and frozen in time). With this assumption, we find an exact analytical solution for the tsunami run-up height as a function of the amplitude of the incident wave and analyse the influence of the tide on the tsunami run-up characteristics. We confirm these results by calculation of the total tsunami and tidal run-up field using analytical solutions of the initial nonlinear shallow water equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Antuono, M., & Brocchini, M. (2007). The boundary value problem for the nonlinear shallow water equations. Studies in Applied Mathematics,119, 73–93.

    Article  Google Scholar 

  • Antuono, M., & Brocchini, M. (2010). Solving the nonlinear shallow-water equations in physical space. Journal of Fluid Mechanics,643, 207–232.

    Article  Google Scholar 

  • Behera, M. R., Murali, K., & Sundar, V. (2011). Effect of the tidal currents at the amphidromes on the characteristics of an N-wave-type tsunami. Proc. Institution of Mechanical Engineers, Pt M – J Engineering for Marine Environment,225, 43–59.

    Article  Google Scholar 

  • Brocchini, M., & Gentile, R. (2001). Modelling the run-up of significant wave groups. Continental Shelf Research,21, 1533–1550.

    Article  Google Scholar 

  • Carrier, G. F., & Greenspan, H. P. (1958). Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics,4, 97–109.

    Article  Google Scholar 

  • Carrier, G. F., Wu, T. T., & Yeh, H. (2003). Tsunami run-up and draw-down on a plane beach. Journal of Fluid Mechanics,475, 79–99.

    Article  Google Scholar 

  • Chanson, H. (2011). Tidal bores, Aegir, Eagre, Mascaret, Pororoca: theory and observations. Singapore: World Scientific.

    Book  Google Scholar 

  • Didenkulova, I. (2009). New trends in the analytical theory of long sea wave runup. In E. Quak & T. Soomere (Eds.), Applied wave mathematics: selected topics in solids, fluids, and mathematical methods (pp. 265–296). New York: Springer.

    Chapter  Google Scholar 

  • Didenkulova, I. I., Kurkin, A. A., & Pelinovsky, E. N. (2007). Run-up of solitary waves on slopes with different profiles. Izvestiya, Atmospheric and Oceanic Physics,43(3), 384–390.

    Article  Google Scholar 

  • Didenkulova, I., & Pelinovsky, E. (2011). Nonlinear wave evolution and runup in an inclined channel of a parabolic cross-section. Physics of Fluids,23(8), 086602.

    Article  Google Scholar 

  • Didenkulova, I., & Pelinovsky, E. (2018). Tsunami wave run-up on a vertical wall in tidal environment. Pure and Applied Geophysics,175, 1387–1391.

    Article  Google Scholar 

  • Dobrokhotov, S Yu., & Tirozzi, B. (2010). Localized solutions of one-dimensional non-linear shallow-water equations with velocity c = √ x. Russian Mathematical Surveys,65(1), 177–179.

    Article  Google Scholar 

  • Gallagher, B. S., & Munk, W. H. (1971). Tides in shallow water: spectroscopy. Tellus,23, 346–363.

    Article  Google Scholar 

  • Kânoglu, U. (2004). Nonlinear evolution and run-up-rundown of long waves over a sloping beach. Journal of Fluid Mechanics,513, 363–372.

    Article  Google Scholar 

  • Kânoglu, U., & Synolakis, C. (2006). Initial value problem solution of nonlinear shallow water-wave equations. Physical Review Letters,97, 148–501.

    Article  Google Scholar 

  • Kulikov, E. A., Rabinovich, A. B., Fine, I. V., Bornhold, B. D., & Thomson, R. E. (1998). Tsunami generation by landslides at the Pacific coast of North America and the role of tides. Oceanology,38, 323–328.

    Google Scholar 

  • Lima, V. V., Miranda, J. M., Baptista, M. A., Catalao, J., Gonzalez, M., Otero, L., et al. (2010). Impact of a 1755-like tsunami in Huelva, Spain. Natural Hazards and Earth System Sciences,10, 139–148.

    Article  Google Scholar 

  • Madsen, P. A., & Fuhrman, D. R. (2008). Run-up of tsunamis and long waves in terms of surf-similarity. Coastal Engineering,55, 209–223.

    Article  Google Scholar 

  • Munk, W. H., & Cartwright, D. E. (1966). Tidal spectroscopy and prediction. Philosophical Transactions of the Royal Society of London, A-Mathematical and Physical Sciences,259, 533–581.

    Google Scholar 

  • Pedersen, G., & Gjevik, B. (1983). Run-up of solitary waves. Journal of Fluid Mechanics,142, 283–299.

    Article  Google Scholar 

  • Pelinovsky, E., & Mazova, R. (1992). Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles. Natural Hazards,6, 227–249.

    Article  Google Scholar 

  • Raz, A., Nicolsky, D., Rybkin, A., & Pelinovsky, E. (2018). Long wave run-up in asymmetric bays and in fjords with two separate heads. Journal of Geophysical Research Oceans,123, 2066–2080.

    Article  Google Scholar 

  • Rybkin, A., Pelinovsky, E., & Didenkulova, I. (2014). Nonlinear wave run-up in bays of arbitrary cross-section: Generalization of the Carrier-Greenspan approach. Journal of Fluid Mechanics,748, 416–432.

    Article  Google Scholar 

  • Shevchenko, G. V. (2017). How the tide influences dangerous level rises on the coast of the Sea of Okhotsk and adjacent areas in cases of tsunami and storm surges. Oceanology,57(5), 621–631.

    Article  Google Scholar 

  • Synolakis, C. E. (1987). The runup of solitary waves. Journal of Fluid Mechanics,185, 523–545.

    Article  Google Scholar 

  • Thomson, R. E., Rabinovich, A. B., Kulikov, E. A., Fine, I. V., & Bornhold, B. D. (2001). On numerical simulation of the landslide-generated tsunami of November 3, 1994 in Skagway Harbor, Alaska. In G. T. Hebenstreit (Ed.), tsunami research at the end of a critical decade, advances in natural and technological hazards research (Vol. 18, pp. 243–282). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Tinti, S., & Tonini, R. (2005). Analytical evolution of tsunamis induced by near-shore earthquakes on a constant-slope ocean. Journal of Fluid Mechanics,535, 33–64.

    Article  Google Scholar 

  • Tolkova, E. (2013). Tide-tsunami interaction in Columbia River, as implied by historical data and numerical simulations. Pure and Applied Geophysics,170, 1115–1126.

    Article  Google Scholar 

  • Tolkova, E. (2018). Tsunami propagation in tidal rivers. New York: Springer.

    Book  Google Scholar 

  • Tolkova, E., Tanaka, H., & Roh, M. (2015). Tsunami observations in rivers from a perspective of tsunami interaction with tide and riverine flow. Pure and Applied Geophysics,172, 953–968.

    Article  Google Scholar 

  • Xin, P., Robinson, C., Li, L., Barry, D., & Bakhtyar, R. (2010). Effects of wave forcing on a subterranean estuary. Water Resources Research,46, W12505.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by ETAG project PUT1378, RFBR grants (17-05-00067, 18-05-80019, and 18-35-20026), and a grant from the President of the Russian Federation for state support of leading scientific schools of the Russian Federation (NSh-2685.2018.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira Didenkulova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didenkulova, I., Pelinovsky, E. Tsunami Run-Up on a Plane Beach in a Tidal Environment. Pure Appl. Geophys. 177, 1583–1593 (2020). https://doi.org/10.1007/s00024-019-02332-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02332-y

Keywords

Navigation