Skip to main content
Log in

The Tsunami Scenario Database of the Indonesia Tsunami Early Warning System (InaTEWS): Evolution of the Coverage and the Involved Modeling Approaches

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study reports on recent developments of the Indonesia Tsunami Early Warning System (InaTEWS), specifically the tsunami modeling components used in the system. It is a dual system: firstly, InaTEWS operates a high-resolution scenario database pre-computed with the finite element model TsunAWI; running in parallel, the system also contains a supra real-time modeling component based on the GPU-parallelized linear long-wave model easyWave, capable of dealing with events outside the database coverage. The evolution of the tsunami scenario database over time is covered in the first sections also touching on the involved capacity building efforts. Starting with a coverage of just the Sunda Arc region, the database now includes scenarios for 15 fault zones. The study is augmented by an investigation of warning products used for early warning; the estimated wave height (EWH) and the estimated time of arrival (ETA). These parameters are determined by easyWave and TsunAWI with model specific approaches. Since the numerical setup of the two models is very different, the extent of variations in warning products is investigated for a number of scenarios, where both pure database scenarios and applications to real events are considered. Finally, the performance of the system in past tsunami events is reviewed to point out major system updates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Androsov, A., Behrens, J., Danilov, S. (2011) Tsunami modelling with unstructured grids. Interaction between tides and tsunami waves. In E. Krause et al (Eds.) Computational Science and High Performance Computing IV. NNFM 115, pp. 191–206.

  • Babeyko, A. Y., Hoechner, A., & Sobolev, S. V. (2010). Source modeling and inversion with near real-time GPS: A GITEWS perspective for Indonesia. Natural Hazards and Earth System Sciences (NHESS),10(7), 1617–1627.

    Article  Google Scholar 

  • Borrero, J. C., Weiss, R., Okal, E. A., Hidayat, R., Suranto, Arcas, & Titov, dv. (2009). The tsunami of 2007 September 12, Bengkulu province, Sumatra, Indonesia: Post-tsunami field survey and numerical modelling. Geophysical Journal International. https://doi.org/10.1111/j.1365-246X.2008.04058.x.

    Article  Google Scholar 

  • Burbidge, D., Mueller, C., & Power, W. (2015). The effect of uncertainty in earthquake fault parameters on the maximum wave height from a tsunami propagation model. Natural Hazards and Earth System Science,3, 3369–3408.

    Google Scholar 

  • Fritz, H. M., et al. (2007). Extreme runup from the 17 July 2006 Java tsunami. Geophysical Research Letters. https://doi.org/10.1029/2007GL029404.

    Article  Google Scholar 

  • Geist, E. L., & Bilek, S. L. (2001). Effect of depth-dependent shear modulus on tsunami generation along subduction zones. Geophysical Research Letters. https://doi.org/10.1029/2000GL012385.

    Article  Google Scholar 

  • Goto, C., Ogawa, Y., Shuto, N. & Imamura, F. (1997). IUGG/IOC time project, numerical method of tsunami simulation with the leap-frog scheme. IOC Manuals and Guides 35, Paris.

  • Greenslade, D. J. M., et al. (2014). An assessment of the diversity in scenario-based tsunami forecasts for the Indian Ocean. Continental Shelf Research,79, 36–45.

    Article  Google Scholar 

  • Griffin, J. D. & Davies, G. (2018). Earthquake sources of the Australian plate margin: revised models for the 2018 national tsunami and earthquake hazard assessments. Record 2018/31. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2018.031.

  • Griffin, J., Latief, H., Kongko, W., Harig, S., Horspool, N., Hanung, R., et al. (2015). An evaluation of onshore digital elevation models for modeling tsunami inundation zones. Frontiers in Earth Science,3, 32. https://doi.org/10.3389/feart.2015.00032.

    Article  Google Scholar 

  • Gusman, A. R., Tanioka, Y., Matsumoto, H., & Iwasaki, S.-I. (2009). Analysis of the tsunami generated by the great 1977 Sumba earthquake that occurred in Indonesia. Bulletin of the Seismological Society of America,99(4), 2169–2179.

    Article  Google Scholar 

  • Hall, R. (2018). The subduction initiation stage of the Wilson cycle. Geological Society, London, Special Publications,470, SP470.3.

    Google Scholar 

  • Hanka, W., Saul, J., Weber, B., Becker, J., Harjadi, P., & Fauzi and GITEWS Seismology Group. (2010). Real-time earthquake monitoring for tsunami warning in the Indian Ocean and beyond. Natural Hazards & Earth System Sciences,10, 2611–2622. https://doi.org/10.5194/nhess-10-2611-2010.

    Article  Google Scholar 

  • Harig, S., Chaeroni, C., Setiyo Pranowo, W., & Behrens, J. (2008). Tsunami simulations on several scales—Comparison of approaches with unstructured meshes and nested grids. Ocean Dynamics, 58(5), 429–440. https://doi.org/10.1007/s10236-008-0162-5

    Article  Google Scholar 

  • Heidarzadeh, M., Muhari, A., & Wijanarto, A. B. (2018). Insights on the source of the 28 September 2018 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulations. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-2065-9.

    Article  Google Scholar 

  • Hill, E. M., et al. (2012). The 2010 Mw 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. Journal of Geophysical Research: Solid Earth,5, 45. https://doi.org/10.1029/2012jb009159.

    Article  Google Scholar 

  • Horspool, N., Pranantyo, I., Griffin, J., Latief, H., Natawidjaja, D. H., Kongko, W., et al. (2014). A probabilistic tsunami hazard assessment for Indonesia. Natural Hazards and Earth System Sciences.. https://doi.org/10.5194/nhess-14-3105-2014.

    Article  Google Scholar 

  • Immerz, A., Harig, S., & Rakowsky, N. (2018). Extending and visualizing the TsunAWI simulation database of the Indonesia tsunami early warning system (InaTEWS). In G. Krause (Ed.), Building bridges at the science-stakeholder interface (pp. 101–107). Cham: Springer.

    Chapter  Google Scholar 

  • Jaffe, B. E., Borrero, J. C., Prasetya, G. S., Peters, R., McAdoo, B., Gelfenbaum, G., et al. (2006). Northwest Sumatra and offshore islands field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra,22(S3), S105–S135.

    Article  Google Scholar 

  • Kamigaichi, O. (2009). Tsunami forecasting and warning. In R. Meyers (Ed.), Encyclopedia of complexity and systems science (pp. 9592–9618). New York: Springer. https://doi.org/10.1007/978-0-387-30440-3_568.

    Chapter  Google Scholar 

  • Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors,6(5), 346–359.

    Article  Google Scholar 

  • Kongko, W., Istiyanto, D. C., Irwandi, I. (2006). Tsunami modeling and field observations of December 26 2004 Indian ocean earthquake. Technical report, Coastal Dynamic Research Center, BPPT Indonesia.

  • Latief, H., Puspito, N., & Imamura, F. (2000). Tsunami catalog and zones in Indonesia. Journal of Natural Disaster Science,22, 25–43.

    Article  Google Scholar 

  • Lauterjung, J., Münch, U., & Rudloff, A. (2010). The challenge of installing a tsunami early warning system in the vicinity of the Sunda Arc, Indonesia. Natural Hazards and Earth System Sciences. https://doi.org/10.5194/nhess-10-641-2010.

    Article  Google Scholar 

  • Lavigne, F., Gomez, C., Giffo, M., Wassmer, P., Hoebreck, C., et al. (2007). Field observations of the 17 July 2006 Tsunami in Java. Natural Hazards and Earth System Science,7(1), 177–183. (Copernicus Publications on behalf of the European Geosciences Union).

    Article  Google Scholar 

  • Münch, U., Rudloff, A., & Lauterjung, J. (2011). Postface The GITEWS Project—Results, summary and outlook. Natural Hazards and Earth Systems Sciences,11, 765–769. https://doi.org/10.5194/nhess-11-765-2011.

    Article  Google Scholar 

  • Pownall, J. M., Hall, R., & Lister, G. S. (2016). Rolling open earth’s deepest forearc basin. Geology,44(11), 947–950.

    Article  Google Scholar 

  • Raape, U., et al. (2010). Decision support for tsunami early warning in Indonesia: The role of OGC standards. In M. Konecny, S. Zlatanova, & T. Bandrova (Eds.), Geographic information and cartography for risk and crisis management. Lecture notes in geoinformation and cartography. Berlin: Springer.

    Google Scholar 

  • Rakowsky, N., Androsov, A., Fuchs, A., Harig, S., Immerz, A., Danilov, S., et al. (2013). Operational tsunami modelling with TsunAWI—Recent developments and applications. Nat: Hazards and Earth System Sciences. https://doi.org/10.5194/nhess-13-1629-2013.

    Book  Google Scholar 

  • Satake, K., Nishimura, Y., Putra, P. S., et al. (2013). Pure and Applied Geophysics,170, 1567. https://doi.org/10.1007/s00024-012-0536-y.

    Article  Google Scholar 

  • Spahn, H., Hoppe, M., Vidiarina, H. D., & Usdianto, B. (2010). Experience from three years of local capacity development for tsunami early warning in Indonesia: Challenges, lessons and the way ahead. Nat: Hazards and Earth System Sciences. https://doi.org/10.5194/nhess-10-1411-2010.

    Book  Google Scholar 

  • Steinmetz, T., Raape, U., Teßmann, S., Strobl, C., Friedemann, M., Kukofka, T., et al. (2010). Tsunami early warning and decision support. Nat: Hazards and Earth System Sciences. https://doi.org/10.5194/nhess-10-1839-2010.

    Book  Google Scholar 

  • Strobl, C., Kiefl, R., Riedlinger, T., & Strunz, G. (2007). Geodatenmanagement und-dienste am Beispiel des Tsunami-Frühwarnsystems für den Indischen Ozean, Gesellschaft für Informatik in der Land- Forst- und Ernährungswirtschaft e.V. (GIL) (in German).

  • Strunz, G., Post, J., Zosseder, K., Wegscheider, S., Mück, M., Riedlinger, T., et al. (2011). Tsunami risk assessment in Indonesia. Nat: Hazards and Earth System Sciences. https://doi.org/10.5194/nhess-11-67-2011.

    Book  Google Scholar 

  • Synolakis, C. E., Bernard, E., Titov, V. V., Kanoglu, U., & Gonzalez, F. I. (2008). Validation and verification of tsunami numerical models. PAGEOPH,165, 2197–2228. https://doi.org/10.1007/s00024-004-0427-y.

    Article  Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America,84(4), 974–1002.

    Google Scholar 

Download references

Acknowledgements

The database extension 2015-2017 was funded by the Australian Department of Foreign Affairs and Trade through the DMInnovation project. We are grateful to all involved colleagues at Geoscience Australia, BMKG, gempa GmbH and AWI for the fruitful collaboration. We would like to thank the Head of BMKG and the AWI data centre for their support. Jonathan Griffin and Rikki Weber publish with the permission of the CEO, Geoscience Australia. We would like to thank two reviewers for valuable suggestions leading to considerable improvements of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Harig.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harig, S., Immerz, A., Weniza et al. The Tsunami Scenario Database of the Indonesia Tsunami Early Warning System (InaTEWS): Evolution of the Coverage and the Involved Modeling Approaches. Pure Appl. Geophys. 177, 1379–1401 (2020). https://doi.org/10.1007/s00024-019-02305-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02305-1

Keywords

Navigation