Ambraseys, N. N. (2008). Descriptive catalogues of historical earthquakes in the Eastern Mediterranean and the Middle East. In J. Fréchet, M. Meghraoui, & M. Stucchi (Eds.), Historical seismology. Modern approaches in solid earth sciences (Vol. 2, pp. 25–39). Dordrecht: Springer.
Google Scholar
Bailey, K., DiVeglio, C., & Welty, A. (2014). An examination of the June 2013 East Coast meteotsunami captured by NOAA observing systems. NOAA Techical Report NOS CO-OPS 079, p. 56.
Bechle, A. J., Kristovich, D. A. R., & Chin, H. W. (2015). Meteotsunami occurrences and causes in Lake Michigan. Journal of Geophysical Research Oceans,120, 8422–8438. https://doi.org/10.1002/2015jc011317.
Article
Google Scholar
Belušić, D., Grisogono, B., & Bencetić Klaić, Z. (2007). Atmospheric origin of the devastating coupled air-sea event in the east Adriatic. Journal of Geophysical Research Atmospheres,112, D17111. https://doi.org/10.1029/2006jd008204.
Article
Google Scholar
Churchill, D. D., Houston, S. H., & Bond, N. A. (1995). The Daytona Beach wave of 3–4 July 1992: A shallow water gravity wave forced by a propagating squall line. Bulletin of the American Meteorological Society,76, 21–32.
Google Scholar
El Sabh, M. I., & Murty, T. S. (1989). Storm surges in the Arabian Gulf. Natural Hazards,1, 371–385.
Google Scholar
Ewing, M., Press, F., & Donn, W. L. (1954). An explanation of the Lake Michigan wave of 26 June 1954. Science,120, 684–686.
Google Scholar
Fritz, H. M., Blount, C. D., Albusaidi, F. B., & Al-Harthy, A. H. M. (2010). Cyclone Gonu storm surge in Oman. Estuarine Coastal and Shelf Science,86(1), 102–106.
Google Scholar
Greenspan, H. P. (1956). The generation of edge waves by moving pressure distributions. Journal of Fluid Mechanics,1, 574–592.
Google Scholar
Heidarzadeh, M., Necmioglu, O., Ishibe, T., & Yalçiner, A. C. (2017). Bodrum-Kos (Turkey–Greece) Mw 6.6 earthquake and tsunami of 20 July 2017: A test for the Mediterranean tsunami warning system. Geoscience Letters,4, 31. https://doi.org/10.1186/s40562-017-0097-0.
Article
Google Scholar
Heidarzadeh, M., Pirooz, M. D., Zaker, N. H., Yalçiner, A. C., Mokhtari, M., & Esmaeily, A. (2008). Historical tsunami in the Makran Subduction Zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Engineering,35(8), 774–786.
Google Scholar
Heidarzadeh, M., Satake, K., Murotani, S., Gusman, A. R., & Watada, S. (2015). Deep-water characteristics of the trans-Pacific tsunami from the 1 April 2014 Mw 8.2 Iquique, Chile Earthquake. Pure and Applied Geophysics,172(3), 719–730.
Google Scholar
Hibiya, T., & Kajiura, K. (1982). Origin of the ‘Abiki’ phenomenon (a kind of seiche) in Nagasaki Bay. Journal of the Oceanographical Society of Japan,38, 172–182.
Google Scholar
Holton, J. R. (2004). An introduction to dynamic meteorology (p. 528). New York: Elsevier Academic Press.
Google Scholar
Honda, K., Terada, T., Yoshida, Y., & Isitani, D. (1908), An investigation on the secondary undulations of oceanic tides. Journal of the College of Science, Imperial University of Tokyo, p. 108.
Horvath, K., Šepić, J., & Prtenjak, M. T. (2018). Atmospheric forcing conducive for the Adriatic 25 June 2014 Meteotsunami event. Pure and Applied Geophysics,175(11), 3817–3837.
Google Scholar
Jansà, A., Monserrat, S., & Gomis, D. (2007). The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami. Advances in Geosciences,12, 1–4.
Google Scholar
Kerkmann, J. (2005). Applications of METEOSAT second generation (MSG)—RGB images: Part 04, RGB composites with channels 01-11 and their interpretation, EUMETSAT. http://oiswww.eumetsat.org/WEBOPS/msg_interpretation/msg_channels.php.
Lamb, H. (1932). Hydrodynamics (6th ed., p. 768). Cambridge: Cambridge University Press.
Google Scholar
Ličer, M., Mourre, B., Troupin, C., Krietemeyer, A., Jansà, A., & Tintoré, J. (2017). Numerical study of Balearic meteotsunami generation and propagation under synthetic gravity wave forcing. Ocean Modelling,111, 38–45.
Google Scholar
Lin, N., & Emanuel, K. (2016). Grey swan tropical cyclones. Nature Climate Change,6(1), 106–111.
Google Scholar
Marcos, M., Monserrat, S., Medina, R., Orfila, A., & Olabarrieta, M. (2009). External forcing of meteorological tsunamis at the coasts of the Balearic Islands. Physics and Chemistry of the Earth,34, 938–947.
Google Scholar
Monserrat, S., Rabinovich, A. B., & Casas, B. (1998). On the reconstruction of the transfer function for atmospherically generated seiches. Geophysical Research Letters,25, 2197–2200.
Google Scholar
Monserrat, S., & Thorpe, A. J. (1992). Gravity-wave observations using an array of microbarographs in the Balearic Islands. Quarterly Journal of the Royal Meteorological Society,118, 259–282.
Google Scholar
Monserrat, S., & Thorpe, A. J. (1996). Use of ducting theory in an observed case of gravity waves. Journal of the Amtospheric Sciences,53(12), 1724–1736.
Google Scholar
Monserrat, S., Vilibić, I., & Rabinovich, A. B. (2006). Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Natural Hazards and Earth System Sciences,6, 1035–1051.
Google Scholar
Munk, W. H., Snodgrass, F. E., & Carrier, G. F. (1956). Edge waves on the continental shelf. Science,123(3187), 127–132.
Google Scholar
Olabarrieta, M., Valle-Levinson, A., Martinez, C. J., Pattiaratchi, C., & Shi, L. (2017). Meteotsunamis in the northeastern Gulf of Mexico and their possible link to El Niño Southern Oscillation. Natural Hazards,88, 1325–1346. https://doi.org/10.1007/s11069-017-2922-3.
Article
Google Scholar
Orlić, M. (1980). About a possible occurrence of the Proudman resonance in the Adriatic. Thalassia Jugoslavica,16(1), 79–88.
Google Scholar
Pasquet, S., & Vilibić, I. (2013). Shelf edge reflection of atmospherically generated long ocean waves along the central US, East Coast. Continental Shelf Research,66, 1–8.
Google Scholar
Pattiaratchi, C. B., & Wijeratne, E. M. S. (2015). Are meteotsunamis an underrated hazard? Philosophical Transactions of the Royal Society A,373, 20140377.
Google Scholar
Powers, J. G., & Reed, R. J. (1993). Numerical simulation of the large-amplitude mesoscale gravity-wave event of 15 December 1987 in the central United States. Monthly Weather Review,121, 2285–2308.
Google Scholar
Proudman, J. (1929). The effects on the sea of changes in atmospheric pressure. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society,2, 197–209.
Google Scholar
Rabinovich, A. B. (1997). Spectral analysis of tsunami waves: Separation of source and topography effects. Journal of Geophysical Research,102(C6), 12663–12676.
Google Scholar
Rabinovich, A. B. (2009). Seiches and harbor oscillations. In Y. C. Kim (Ed.), Handbook of coastal and ocean engineering (Vol. 9, pp. 193–236). Singapore: World Scientific Publ.
Google Scholar
Rabinovich, A. B., & Monserrat, S. (1996). Meteorological tsunamis near the Balearic and Kuril Islands: Descriptive and statistical analysis. Natural Hazards,13, 55–90.
Google Scholar
Rabinovich, A. B., & Thomson, R. E. (2007). The 26 December 2004 Sumatra tsunami: Analysis of tide gauge data from the World Ocean. Part 1: Indian Ocean and South Africa. Pure and Applied Geophysics,164(2/3), 261–308.
Google Scholar
Rabinovich, A. B., Thomson, R. E., & Fine, I. V. (2013). The 2010 Chilean tsunami off the west coast of Canada and the northwest coast of the United States. Pure and Applied Geophysics,170(9–10), 1529–1565. https://doi.org/10.1007/s00024-012-0541-1.
Article
Google Scholar
Rabinovich, A. B., Vilibić, I., & Tinti, S. (2009). Meteorological tsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Physics and Chemistry of the Earth,17(34), 891–893.
Google Scholar
Renault, L., Vizoso, G., Jansá, A., Wilkin, J., & Tintoré, J. (2011). Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models. Geophysical Research Letters,38, L10601. https://doi.org/10.1029/2011gl047361.
Article
Google Scholar
Salaree, A., Mansouri, R., & Okal, E. A. (2018). The intriguing tsunami of 19 March 2017 at Bandar Dayyer, Iran: Field survey and simulations. Natural Hazards,90(3), 1277–1307.
Google Scholar
Sallenger, A. H., List, J. H., Gelfenbaum, G., Stumpf, R. P., & Hansen, M. (1995). Large wave at Daytona Beach, Florida, explained as a squall-line surge. Journal of Coastal Research,11, 1383–1388.
Google Scholar
Šepić, J., Međugorac, I., Janeković, I., Dunić, N., & Vilibić, I. (2016). Multi-meteotsunami event in the Adriatic Sea generated by atmospheric disturbances of 25–26 June 2014. Pure and Applied Geophysics,173, 4117–4138.
Google Scholar
Šepić, J., Rabinovich, A. B., & Sytov, V. N. (2018a). Odessa tsunami of 27 June 2014: Observations and numerical modelling. Pure and Applied Geophysics,175(4), 1545–1572.
Google Scholar
Šepić, J., Vilibić, I., & Belušić, D. (2009). Source of the 2007 Ist meteotsunami (Adriatic Sea). Journal of Geophysical Research,114, C03016. https://doi.org/10.1029/2008jc005092.
Article
Google Scholar
Šepić, J., Vilibić, I., Rabinovich, A. B., & Monserrat, S. (2015). Widespread tsunami-like waves of 23–27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing. Scientific Reports,5(11682), 1–5. https://doi.org/10.1038/srep11682.
Article
Google Scholar
Šepić, J., Vilibić, I., Rabinovich, A., & Tinti, S. (2018b). Meteotsunami (“ Marrobbio”) of 25–26 June 2014 on the Southwestern Coast of Sicily, Italy. Pure and Applied Geophysics,175(4), 1573–1593.
Google Scholar
Soloviev, S. L. (1978). Tsunamis. The assessment and mitigation of earthquake risk (Natural Hazard, 1) (pp. 118–139). Paris: UNESCO.
Google Scholar
Tanaka, K. (2010). Atmospheric pressure-wave bands around a cold front resulted in a meteotsunami in the East China Sea in February 2009. Natural Hazards and Earth System Sciences,10, 2599–2610.
Google Scholar
Thomson, R. E., & Emery, W. J. (2014). Data analysis methods in physical oceanography (3rd ed., p. 728p). New York: Elsevier Science.
Google Scholar
Thomson, R. E., Rabinovich, A. B., Fine, I. V., et al. (2009). Meteorological tsunamis on the coasts of the British Columbia and Washington. Physics and Chemistry of the Earth,34, 971–988.
Google Scholar
Vilibić, I. (2008). Numerical simulations of the Proudman resonance. Continental Shelf Research,28, 574–581.
Google Scholar
Vilibić, I., Šepić, J., Rabinovich, A. B., & Monserrat, S. (2016). Modern approaches in meteotsunami research and early warning. Frontiers in Marine Science,3(57), 1–7. https://doi.org/10.3389/fmars.2016.00057.
Article
Google Scholar
Wang, S., & Zhang, F. (2007). Sensitivity of the mesoscale gravity waves to the baroclinity of jet-front systems. Monthly Weather Review,135, 670–688.
Google Scholar
Wertman, C. A., Yablonsky, R. M., Shen, Y., Merrill, J., Kincaid, C. R., & Pockalny, R. A. (2014). Mesoscale convective system surface pressure anomalies responsible for meteotsunamis along the US East Coast on June 13th, 2013. Scientific Reports,4, 7143. https://doi.org/10.1038/srep07143.
Article
Google Scholar
Zaytsev, O., Rabinovich, A. B., & Thomson, R. E. (2017). The 2011 Tohoku tsunami on the coast of Mexico: A case study. Pure and Applied Geophysics,174(8), 2961–2986. https://doi.org/10.1007/s00024-017-1593-z.
Article
Google Scholar