Skip to main content
Log in

Twenty-Five Years of Progress in the Science of “Geological” Tsunamis Following the 1992 Nicaragua and Flores Events

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We review a set of 47 tsunamis of geological origin (triggered by earthquakes, landslides or volcanoes) which have occurred over the past 25 years and provided significant new insight into theoretical, experimental, field, or societal aspects of tsunami science. Among the principal developments in our command of various aspects of tsunamis, we earmark the development of the W-phase inversion for the low-frequency moment tensor of the parent earthquake; the abandonment of the concept of a maximum earthquake magnitude for a given subduction zone, controlled by simple plate properties; the development and implementation of computer codes simulating the interaction of tsunamis with initially dry land at beaches, thus introducing a quantitative component to realistic tsunami warning procedures; and the recent in situ investigation of current velocities, in addition to the field of surface displacements, during the interaction of tsunamis with harbors. Continued research remains warranted, notably in the field of the real time identification of “tsunami earthquakes” whose tsunamis are larger than expected from their seismic magnitudes, especially conventional ones. The recent tragedy during the 2018 Krakatau flank collapse, along a scenario which had been quantitatively forecast, also emphasizes the need for a continued effort in the education of the populations at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We refrain from using the word “predicted”, which would imply a precise date for the forecast. Note that the received date for the original manuscript (05 November 1997) is indeed anterior to the event.

References

  • Abe, K., Abe, K., Tsuji, Y., Imamura, F., Katao, H., Iio, Y., et al. (1993). Field survey of the Nicaragua earthquake and tsunami of September 2, 1992. Bulletin of the Earthquake Research Institute of Tokyo University, 68, 23–70.

    Google Scholar 

  • Altınok, Y., Tinti, S., Alpar, V., Yalçıner, A. C., Ersoy, Ş., Bortolucci, E., et al. (2001). The Tsunami of August 17, 1999 in İzmit Bay. Turkey, Natural Hazards, 24, 133–146.

    Google Scholar 

  • Ambraseys, N. N. (1991). The Rukwa earthquake of 13 December 1910 in East Africa. Terra Nova, 3, 202–211.

    Google Scholar 

  • Ammon, C. J. (2008). A great earthquake doublet and seismic stress transfer cycle in the central Kuril Islands. Nature, 451, 561–565.

    Google Scholar 

  • Angenheister, G. (1920). Vier Erdbeben and Flutwellen im pazifischen Ozean, beobachtet am Samoa Observatorium, 1917–1919, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematische-physikalische Klasse, 201–204.

  • Aránguiz, R., González, G., González, J., Catalán, P. A., Cienfuegos, R., Yagi, Y., et al. (2016). The 16 September 2015 Chile tsunami from the post-tsunami survey and numerical modeling perspectives. Pure and Applied Geophysics, 173, 333–348.

    Google Scholar 

  • Artru, J., Dučić, V., Kanamori, H., Lognonné, P., & Murakami, M. (2005). Ionospheric detection of gravity waves induced by tsunamis. Geophysical Journal International, 160, 840–848.

    Google Scholar 

  • Barberopoulou, A., Borrero, J. C., Uslu, B., Legg, M. R., & Synolakis, C. E. (2011). A second generation of tsunami inundation maps for the State of California. Pure and Applied Geophysics, 168, 2133–2146.

    Google Scholar 

  • Barrientos, S. E., Vigny, C., Ward, S. N., & Bataille, K. D. (2009). Earthquake-induced rockfall and tsunami in Southern Chile. Eos, Transactions of the American Geophysical Union, 90(53), NH43B–1315 [abstract].

    Google Scholar 

  • Bernard, E. N., & Milburn, H. B. (1985). Long-wave observations near the Galápagos Islands. Journal of Geophysical Research, 90, 3361–3366.

    Google Scholar 

  • Boatwright, J., & Choy, G. L. (1986). Teleseismic estimates of the energy radiated by shallow earthquakes. Journal of Geophysical Research, 91, 2095–2112.

    Google Scholar 

  • Borrero, J. C., Ortíz, M., Titov, V. V., & Synolakis, C. E. (1997). Field survey of Mexican tsunami produces new data, unusual photos, Eos. Transactions of the American Geophysical Union, 78, 85 and 87–88.

    Google Scholar 

  • Borrero, J. C., Yalçıner, A. C., Kânoğlu, U., Titov, V. V., McCarthy, D., & Synolakis, C. E. (2003). Producing tsunami inundation maps in California. In A. C. Yalçıner, E. N. Pelinovsky, E. A. Okal, & C. E. Synolakis (Eds.), Submarine landslides and tsunamis (pp. 315–329). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Borrero, J. C., Weiss, R., Okal, E. A., Hidayat, R., Suranto, A. D., & Titov, V. V. (2009). The tsunami of 12 September 2007, Bengkulu Province, Sumatra, Indonesia: Post-tsunami survey and numerical modeling. Geophysical Journal International, 178, 180–194.

    Google Scholar 

  • Borrero, J. C., McAdoo, B. G., Jaffe, B., Dengler, L., Gelfenbaum, G., Higman, B., et al. (2011). Field survey of the March 28, 2005 Nias-Simeulue earthquake and tsunami. Pure and Applied Geophysics, 168, 1075–1088.

    Google Scholar 

  • Borrero, J. C., Kalligeris, N., Lynett, P. J., Fritz, H. M., Newman, A. V., & Convers, J. A. (2014). Observations and modeling of the August 27, 2012 earthquake affecting El Salvador and Nicaragua. Pure and Applied Geophysics, 171, 3421–3435.

    Google Scholar 

  • Briggs, M. J., Synolakis, C. E., Harkins, G. S., & Green, D. R. (1995). Laboratory experiments of tsunami run-up on a circular island. Pure and Applied Geophysics, 144, 569–594.

    Google Scholar 

  • Brunt, K. M., Okal, E. A., & MacAyeal, D. R. (2011). Antarctic ice-shelf calving triggered by Honshu earthquake and tsunami, March 2011. Journal of Glaciology, 57, 785–788.

    Google Scholar 

  • Caminade, J.-P., Charlie, D., Kânoğlu, U., Koshimura, S., Matsutomi, H., Moore, A., et al. (2000). Vanuatu earthquake and tsunami cause much damage, few casualties, Eos. Transactions of the American Geophysical Union, 81, 641 and 646–6470.

    Google Scholar 

  • Catalán, P. A., Aránguiz, R., González, G., Tomita, T., Cienfuegos, R., González, J., et al. (2015). The 1 April 2014 Pisagua tsunami: Observations and modeling. Geophysical Research Letters, 42, 2918–2925.

    Google Scholar 

  • Chlieh, M., Perfettini, H., Tavera, H., Avouac, J.-P., Remy, D., Nocquet, J.-M., et al. (2011). Interseismic coupling and seismic potential along the Central Andes subduction zone. Journal of Geophysical Research, 116, B12405, 21 pp.

    Google Scholar 

  • Choy, G. L., & Boatwright, J. (2007). The energy radiated by the 26 December 2004 Sumatra-Andaman earthquake estimated from 10-minute \(P\)-wave windows. Bulletin of the Seismological Society of America, 97, S18–S24.

    Google Scholar 

  • Cruz, G., & Wyss, M. (1983). Large earthquakes, mean sea level, and tsunamis along the Pacific coast of Mexico and Central America. Bulletin of the Seismological Society of America, 73, 553–570.

    Google Scholar 

  • Dengler, L., Borrero, J., Gelfenbaum, G., Jaffe, B., Okal, E. A., Ortíz, M., et al. (2003). Tsunami. In A. Rodriguez-Marek & C. Edwards (Eds.), Southern Peru earthquake of 23 June 2001, reconnaissance report (Vol. 19, pp. 115–144). Oakland: Earthquake Spectra. Supp. A.

    Google Scholar 

  • Dengler, L., Uslu, B., Barberopoulou, A., Yim, S. C., & Kelly, A. (2009). The November 15, 2006 Kuril Islands-generated tsunami in Crescent City. California, Pure and Applied Geophysics, 166, 37–53.

    Google Scholar 

  • Fine, I. V., Cherniawsky, J. Y., Thomson, R. E., Rabinovich, A. B., & Krassovski, M. V. (2015). Observations and numerical modeling of the 2012 Haida Gwaii tsunami off the coast of British Columbia. Pure and Applied Geophysics, 172, 699–718.

    Google Scholar 

  • Fritz, H. M., & Kalligeris, N. (2008). Ancestral heritage saves tribes during 1 April 2007 Solomon Islands tsunami. Geophysical Research Letters, 35(1), L01607, 5 pp.

    Google Scholar 

  • Fritz, H. M., Borrero, J. C., Synolakis, C. E., & Yoo, J. (2006). 2004 Indian Ocean tsunami flow velocity measurements from survivor videos. Geophysical Research Letters, 33(24), L24605, 5 pp.

    Google Scholar 

  • Fritz, H. M., Kongko, W., Moore, A., McAdoo, B., Goff, J., Harbits, C., et al. (2007). Extreme run-up from the 17 July 2006 Java tsunami. Geophysical Research Letters, 34(12), L12602.

    Google Scholar 

  • Fritz, H. M., Kalligeris, N., Borrero, J. C., Broncano, P., & Ortega, E. (2008). The 15 August 2007 Peru tsunami run-up observations and modeling. Geophysical Research Letters, 35(10), L10604, 5 pp.

    Google Scholar 

  • Fritz, H. M., Borrero, J. C., Synolakis, C. E., Okal, E. A., Weiss, R., Titov, V. V., et al. (2011a). Insights on the 2009 South Pacific tsunami in Samoa and Tonga from field surveys and numerical simulations. Earth Science Reviews, 107, 66–75.

    Google Scholar 

  • Fritz, H. M., Petroff, C. M., Catalán, P. A., Cienfuegos, R., Winckler, P., Kalligeris, N., et al. (2011b). Field survey of the 27 February 2010 Chile tsunami. Pure and Applied Geophysics, 168, 1989–2010.

    Google Scholar 

  • Fritz, H. M., Vilmond-Hillaire, J., Molière, E., Wei, Y., & Mohammed, F. (2012). Twin tsunamis triggered by the 12 January 2010 Haiti earthquake. Pure and Applied Geophysics, 170, 1463–1474.

    Google Scholar 

  • Fritz, H. M., Papantoniou, A., Biuokoto, L., & Gilly, A. (2013). The Solomon Islands tsunami of 6 February 2013 field survey in the Santa Cruz Islands. Eos, Transactions of the American Geophysical Union, 96(53), NH41A-1696. [abstract].

    Google Scholar 

  • Fritz, H. M., Giachetti, T., Anderson, S. A., & Gauthier, D. (2018). Field survey of the 17 June 2017 landslide-generated tsunami in Karrat Fjord, Greenland. Geophysical Research Abstracts, 20, EGU-2018-18345 [abstract].

    Google Scholar 

  • Giachetti, T., Paris, R., Kelfoun, K., & Ontowirjo, B. (2012). Tsunami hazard related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia. Geological Society of London, Special Publications, 361, 79–90.

    Google Scholar 

  • Gica, E., Spillane, M., Titov, V. V., Chamberlin, C., & Newman, J. C. (2008). Development of the forecast propagation database for NOAA’s Short-term Inundation Forecast for Tsunamis (SIFT). NOAA Tech. Memo. OAR PMEL, 139, 89. pp.

    Google Scholar 

  • Godin, O. A., Irisov, V. G., Leben, R. R., Hamlington, B. D., & Wick, G. A. (2009). Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami. Natural Hazards Earth Science Systems, 9, 1135–1147.

    Google Scholar 

  • González, F. I., Mader, C. L., Eble, M. C., & Bernard, E. N. (1991). The 1987–88 Alaskan Bight tsunamis: Deep ocean data and model comparisons. Natural Hazards, 4, 119–139.

    Google Scholar 

  • Goto, C., Ogawa, Y., Shuto, N., & Imamura, F. (1997). Numerical method of tsunami simulation with the leap-frog schemes. IOC Manuals and Guides, 35, 126. pp., UNESCO, Paris.

    Google Scholar 

  • Green, G. (1838). On the motion of waves in a variable canal of small depth and width. Transactions of the Cambridge Philosophical Society, 6, 457–462.

    Google Scholar 

  • Guilbert, J., Vergoz, J., Schisselé, E., Roueff, A., & Cansi, Y. (2005). Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the \(M_w=9.0\) Sumatra earthquake. Geophysical Research Letters, 32(15), L15310, 5 pp.

    Google Scholar 

  • Gusiakov, V. K., Dunbar, P., & Arcos, N. (2019). Twenty-five years (1992–2016) of global tsunamis: Statistical and analytical overview. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02113-7.

    Google Scholar 

  • Hammack, J. L. (1973). A note on tsunamis: Their generation and propagation in an ocean of uniform depth. Journal of Fluid Mechanics, 60, 769–799.

    Google Scholar 

  • Hanson, J. A., & Bowman, J. R. (2005). Dispersive and reflected tsunami signals from the 2004 Indian Ocean tsunami observed on hydrophone and seismic stations. Geophysical Research Letters, 32(17), L17606. 5 pp.

    Google Scholar 

  • Harig, S., Androsov, A., & Rakowsky, N. (2019). Simulating landslide generated tsunamis in Palu Bay, Sulawesi, Indonesia. Geophysical Research Abstracts, 21, EGU2019–7094 [abstract].

    Google Scholar 

  • Hayes, G. P., Rivera, L., & Kanamori, H. (2009). Source inversion of the \(W\) phase: Real-time implementation and extension to low magnitudes. Seismological Research Letters, 80, 817–822.

    Google Scholar 

  • Hayes, G., Herman, M. W., Barnhart, W. D., Furlong, K. P., Riquelme, S., Benz, H. M., et al. (2014). Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature, 512, 295–298.

    Google Scholar 

  • Heidarzadeh, M., & Satake, K. (2014). Possible sources of the tsunami observed in the northwestern Indian Ocean following the 2013 September 24 \(M_w = 7.7\) Pakistan inland earthquake. Geophysical Journal International, 199, 752–766.

    Google Scholar 

  • Heidarzadeh, M., & Satake, K. (2017). Possible dual earthquake-landslide source of the 13 November 2016 Kaikoura, New Zealand tsunami. Pure and Applied Geophysics, 174, 3737–3749.

    Google Scholar 

  • Heidarzadeh, M., Murotani, S., Satake, K., Takagawa, T., & Saito, T. (2017). Fault size and depth extent of the Ecuador earthquake (\(M_w =7.8\)) of 16 April 2016 from teleseismic and tsunami data. Geophysical Research Letters, 44, 2211–2219.

    Google Scholar 

  • Heidarzadeh, M., Muhari, A., & Wijanarto, A. B. (2019). Insights on the source of the 28 September 2018 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulations. Pure and Applied Geophysics, 176, 25–43.

    Google Scholar 

  • Heinrich, P., Schindelé, F., Guibourg, S., & Ihmlé, P. (1998). Modeling of the 1996 Peruvian tsunami. Geophysical Research Letters, 25, 2687–2690.

    Google Scholar 

  • Heinrich, P., Mangeney, A., Guibourg, S., Roche, R., Boudon, G., & Cheminée, J.-L. (1998). Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles. Geophysical Research Letters, 25, 3697–3700.

    Google Scholar 

  • Higman, H., Shugar, D. H., Stark, C. P., Ekström, G., Koppes, M. N., Lynett, P., et al. (2018). The 2015 landslide and tsunami in Taan Fiord, Alaska. Science Reports, 8(1), 12993, 12 pp.

    Google Scholar 

  • Hill, E. M., Borrero, J. C., Huang, Z., Qiu, Q., Banerjee, P., Natawidjaja, D. H., et al. (2012). The 2010 \(M_w =7.8\) Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. Journal of Geophysical Research, Solid Earth, 117(6), B06402, 21 pp.

    Google Scholar 

  • Hutt, C. R., Bolton, H. F., & Holcomb, L. G. (2002). U.S. contribution to digital global seismograph network. In W. H. K. Lee, H. Kanamori, P. Jennings, & C. Kisslinger (Eds.), International Handbook of Earthquake and Engineering Seismology (pp. 319–332). New York: Academic Press.

    Google Scholar 

  • Ihmlé, P., Gomez, J.-M., Heinrich, P., & Guibourg, S. (1998). The 1996 Peru tsunamigenic earthquake: Broadband source process. Geophysical Research Letters, 25, 2691–2694.

    Google Scholar 

  • Imamura, F., Shuto, N., Ide, S., Yoshida, Y., & Abe, K. (1993). Estimate of the tsunami source of the 1992 Nicaraguan earthquake from tsunami data. Geophysical Research Letters, 20, 1515–1518.

    Google Scholar 

  • Imamura, F., Gica, E., Takahashi, T., & Shuto, N. (1995). Numerical simulations of the 1992 Flores tsunami: Interpretation of tsunami phenomena in Northeastern Flores and damage at Babi Island. Pure and Applied Geophysics, 144, 555–568.

    Google Scholar 

  • Imamura, F., Synolakis, C. E., Gica, E., Titov, V. V., Listanco, E., & Lee, H. J. (1995). Field survey of the 1994 Mindoro Island, Philippines tsunami. Pure and Applied Geophysics, 144, 875–890.

    Google Scholar 

  • Imamura, F., Subandono, D., Watson, G., Moore, A., Takahashi, T., Matsutomi, H., et al. (1997). Irian Jaya earthquake and tsunami cause serious damage. Eos, Transactions of the American Geophysical Union, 78, 197 and 201.

    Google Scholar 

  • Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake, imaged by the Hi-Net array. Nature, 435, 933–936.

    Google Scholar 

  • Kalligeris, N., Skanavis, V., Tavakkol, S., Ayça, A., El Safty, H., Lynett, P. J., et al. (2016). Lagrangian flow measurements and observations of the 2015 Chilean tsunami in Ventura, CA. Geophysical Research Letters, 43, 5217–5224.

    Google Scholar 

  • Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6, 346–359.

    Google Scholar 

  • Kanamori, H. (1993). \(W\) phase. Geophysical Research Letters, 20, 1691–1694.

    Google Scholar 

  • Kanamori, H., & Cipar, J. J. (1974). Focal process of the great Chilean earthquake, May 22, 1960. Physics of the Earth and Planetary Interiors, 9, 128–136.

    Google Scholar 

  • Kanamori, H., & Rivera, L. (2008). Source inversion of \(W\) phase: Speeding up tsunami warning. Geophysical Journal International, 175, 222–238.

    Google Scholar 

  • Kanamori, H., Rivera, L., & Lamotte, S. (2019). Evidence for a large strike-slip component during the 1960 Chilean earthquake. Geophysical Journal International, 218, 1–32.

    Google Scholar 

  • Kawata, Y., Benson, B. C., Borrero, J. C., Borrero, J. L., Davies, H. L., de Lange, W. P., et al. (1999). Tsunami in Papua New Guinea was as intense as first thought. Eos, Transactions of the American Geophysical Union, 80, 101–105.

    Google Scholar 

  • Kerr, R. (2005). Model shows islands muted tsunami. Science, 308, 341.

    Google Scholar 

  • Kulikov, E. A., Rabinovich, A. B., Thomson, R. E., & Bornhold, B. D. (1996). The landslide tsunami of November 3, 1994, Skagway Harbor, Alaska. Journal of Geophysical Research, 101, 6609–6615.

    Google Scholar 

  • La Rocca, M., Galluzzo, D., Saccorotti, G., Tinti, S., Cimini, G. B., & Del Pezzo, E. (2004). Seismic signals associated with landslides and with a tsunami at Stromboli Volcano, Italy. Bulletin of the Seismological Society of America, 94, 1850–1867.

    Google Scholar 

  • Lay, T., Kanamori, H., Ammon, C. J., Hutko, A. R., Furlong, K., & Rivera, L. (2009). The 2006–2007 Kuril Islands great earthquake sequence. Journal of Geophysical Research, Solid Earth, 114(B11), B11308, 31 pp.

    Google Scholar 

  • Lay, T., Ammon, C. J., Kanamori, H., Rivera, L., Koper, K. D., & Hutko, A. R. (2010). The 2009 Samoa–Tonga great earthquake triggered doublet. Nature, 466, 964–968.

    Google Scholar 

  • Lay, T., Ammon, C. J., Kanamori, H., Xue, L., & Kim, M. J. (2011). Possible large near-trench slip during the 2011 \(M_w =9.0\) off the Pacific coast of Tohoku earthquake. Earth, Planets and Space, 63, 687–692.

    Google Scholar 

  • Lay, T., Ye, L., Kanamori, H., Yamazaki, Y., Cheug, K. F., Kwong, K., et al. (2013). The October 28, 2012 \(M_w =7.8\) Haida Gwaii underthrusting earthquake and tsunami: Slip partitioning along the Queen Charlotte Fault transpressional plate boundary. Earth and Planetary Science Letters, 375, 57–70.

    Google Scholar 

  • Lay, T., Ye, L., Bai, Y., Cheung, K. F., & Kanamori, H. (2018). The 2018 \(M_w =7.9\) Gulf of Alaska earthquake: Multiple fault rupture in the Pacific plate. Geophysical Research Letters, 45, 9542–9551.

    Google Scholar 

  • Legrand, D., Barrientos, S. E., Bataille, K., Cembrano, J., & Pavez, A. (2011). The fluid-driven tectonic swarm of Aysén Fjord, Chile (2007) associated with two earthquakes (\(M_w = 6.1\) and \(M_w =6.2\)) within the Liquiñe-Ofqui Fault Zone. Continental Shelf Research, 31, 154–161.

    Google Scholar 

  • Leonard, L. J., & Bednarski, J. M. (2014). Field survey following the 28 October 2012 Haida Gwaii tsunami. Pure and Applied Geophysics, 171, 3467–3482.

    Google Scholar 

  • Li, X., Shao, G., & Ji, C. (2009). Rupture process of the 2009 \(M_w =8.1\) Samoa earthquake constrained by joint inverting teleseismic body, surface waves and local strong motion. Eos, Transactions of the American Geophysical Union, 91(53), U21D-03 [abstract].

    Google Scholar 

  • Liu, J. Y., Tsai, Y. B., Chen, S. W., Lee, C. P., Chen, Y. C., Yen, H. Y., et al. (2006). Giant ionospheric disturbances excited by the \(M =9.3\) Sumatra earthquake of 26 December 2004. Geophysical Research Letters, 33, L02103, 4 pp.

    Google Scholar 

  • Liu, P. L.-F., Cho, Y.-S., Yoon, S. B., & Seo, S. N. (1994). Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In M. I. El-Sabh (Ed.), Recent Developments in Tsunami Research (pp. 99–115). Dordrecht: Kluwer.

    Google Scholar 

  • Liu, P. L.-F., Cho, Y.-S., Briggs, M. J., Synolakis, C. E., & Kânoğlu, U. (1995). Run-up of solitary waves on a circular island. Journal of Fluid Mechanics, 302, 259–285.

    Google Scholar 

  • Lobkovsky, L. I., Rabinovich, A. B., Kulikov, E. A., Ivashchenko, A. I., Fine, I. V., Thomson, R. E., et al. (2009). The Kuril earthquakes and tsunamis of November 15, 2006 and January 13, 2007: Observations, analysis and numerical modeling. Oceanology, 49, 166–181.

    Google Scholar 

  • Lockwood, O. G., & Kanamori, H. (2006). Wavelet analysis of the seismograms of the 2004 Sumatra-Andaman earthquake and its application to tsunami early warning. Geochemistry, Geophysics and Geosystems, 7(9), GC001272, 10 pp.

    Google Scholar 

  • MacInnes, B. T. (2010). Bridging seismology and geomorphology: Investigations of the 2006 and 2007 Kuril Islands tsunamis, Ph.D. Dissertation, 188 pp., University of Washington, Seattle.

  • MacInnes, B. T., Pinegina, T. K., Bourgeois, J., Razhigaeva, N. G., & Kaistrenko, V. M. (2009). Field survey and geological effects of the 15 November 2006 Kuril tsunami in the Middle Kuril Islands. Pure and Applied Geophysics, 166, 9–36.

    Google Scholar 

  • Manoj, C., Maus, S., & Chulliat, A. (2011). Observation of magnetic fields generated by tsunamis. Eos, Transactions of the American Geophysical Union, 92, 13–14.

    Google Scholar 

  • Marris, E. (2005). Inadequate warning system left Asia at the mercy of tsunami. Nature, 433, 3–5.

    Google Scholar 

  • Martin, S. S., Li, L., Okal, E. A., Morin, J., Tetteroo, A., Switzer, A., et al. (2019). Reassessment of the 1907 Sumatra “tsunami earthquake” based on macroseismic, seismological, and tsunami observations, and modeling. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02134-2.

    Google Scholar 

  • Matsutomi, H., & Iizuka, H. (1998). Tsunami current velocity on land and its simple estimation method. Proceedings of Coastal Engineering, Japan Society of Coastal Engineers, 45, 361–365. [in Japanese].

    Google Scholar 

  • Matsutomi, H., Shuto, N., Imamura, F., & Takahashi, T. (2001). Field survey of the 1996 Irian Jaya earthquake tsunami in Biak Island. Natural Hazards, 24, 199–212.

    Google Scholar 

  • McAdoo, B. G., Dengler, L., Prasetya, G., & Titov, V. V. (2006). Smong: How an oral history saved thousands on Indonesia’s Simeulue Island during the December 2004 and March 2005 tsunamis. Earthquake Spectra, 22, S661–S669.

    Google Scholar 

  • McCaffrey, R. (2007). The next great earthquake. Science, 315, 1675–1676.

    Google Scholar 

  • McCloskey, J., Nalbant, S. S., & Steacy, S. (2005). Earthquake risk from co-seismic stress. Nature, 434, 291.

    Google Scholar 

  • McNamara, D. E., Ringler, A. T., Hutt, C. R., & Gee, L. S. (2011). Seismically observed seiching in the Panama Canal. Journal of Geophysical Research, 116(B4), B04312, 12 pp.

    Google Scholar 

  • Meining, C., Stalin, S. E., Nakamura, A. I., González, F. I., & Milburn, H. B. (2005). Technology developments in real-time tsunami measuring, monitoring and forecasting. Proceedings of OCEANS 2005, MTS/IEEE, 93, 1673–1679.

    Google Scholar 

  • Miller, D. J. (1960). The Alaska earthquake of July 10, 1958: Giant wave in Lituya Bay. Bulletin of the Seismological Society of America, 50, 253–266.

    Google Scholar 

  • Nalbant, S., Steacy, S., Sieh, K., Natawidjaja, D., & McCloskey, J. (2005). Updated earthquake hazard in Sumatra. Nature, 435, 756–757.

    Google Scholar 

  • Nettles, M., Ekström, G., Dziewoński, A. M., & Maternovskaya, N. (2005). Source characteristics of the great Sumatra earthquake and its aftershocks. Eos, Transactions of the American Geophysical Union, 86(18), U43A−01 [abstract].

    Google Scholar 

  • Newman, A. V., & Okal, E. A. (1998). Teleseismic estimates of radiated seismic energy: The \( E/ M_0 \) discriminant for tsunami earthquakes. Journal of Geophysical Research, 103, 26885–26898.

    Google Scholar 

  • Newman, A. V., Feng, L., Fritz, H. M., Lifton, Z. M., Kalligeris, N., & Wei, Y. (2011). The energetic 2010 \(M_w =7.1\) Solomon Islands tsunami earthquake. Geophysical Journal International, 186, 775–781.

    Google Scholar 

  • Newman, A. V., Hayes, G., Wei, Y., & Convers, J. (2011). The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation. Geophysical Research Letters, 38(5), L05302, 10 pp.

    Google Scholar 

  • Ni, S., Kanamori, H., & Helmberger, D. V. (2005). Energy radiation from the Sumatra earthquake. Nature, 434, 582.

    Google Scholar 

  • Nöggerath, J., Geller, R. J., & Gusiakov, V. K. (2011). Fukushima: The myth of safety, reality of geoscience. Bulletin of Atomic Scientists, 67(6), 36–37.

    Google Scholar 

  • Occhipinti, G., Lognonné, P., Kherani, A. A., & Hébert, H. (2006). Three-dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami. Geophysical Research Letters, 33, L20104.

    Google Scholar 

  • Okal, E. A. (1993). \( WM_m \): An extension of the concept of mantle magnitude to the \(W\) phase, with application to real-time assessment of the ultra-long component of the seismic source. Eos, Transactions of the American Geophysical Union, 74(33), 344 [abstract].

    Google Scholar 

  • Okal, E. A. (2003). \(T\) waves from the 1998 Papua New Guinea earthquake and its aftershocks: Timing the tsunamigenic slump. Pure and Applied Geophysics, 160, 1843–1863.

    Google Scholar 

  • Okal, E. A. (2007). Seismic records of the 2004 Sumatra and other tsunamis: A quantitative study. Pure and Applied Geophysics, 164, 325–353.

    Google Scholar 

  • Okal, E. A. (2013). From 3-Hz \(P\) waves to \({}_{0}S_2\): No evidence of a slow component to the source of the 2011 Tohoku earthquake. Pure and Applied Geophysics, 170, 963–973.

    Google Scholar 

  • Okal, E. A. (2017). The excitation of tsunamis by deep earthquakes. Geophysical Journal International, 209, 234–249.

    Google Scholar 

  • Okal, E. A., & Borrero, J. C. (2011). The “tsunami earthquake” of 22 June 1932 in Manzanillo, Mexico: Seismological study and tsunami simulations. Geophysical Journal International, 187, 1443–1459.

    Google Scholar 

  • Okal, E. A., & MacAyeal, D. R. (2006). Seismic recording on drifting icebergs: Catching seismic waves, tsunamis and storms from Sumatra and elsewhere. Seismological Research Letters, 77, 659–671.

    Google Scholar 

  • Okal, E. A., & Newman, A. V. (2001). Tsunami earthquakes: The quest for a regional signal. Physics of the Earth and Planetary Interiors, 124, 45–70.

    Google Scholar 

  • Okal, E. A., & Saloor, N. (2017). Historical tsunami earthquakes in the Southwest Pacific: An extension to \(\Delta > 80^{\circ }\) of the Energy-to-Moment parameter \(\Theta \). Geophysical Journal International, 210, 852–873.

    Google Scholar 

  • Okal, E. A., Piatanesi, A., & Heinrich, P. (1999). Tsunami detection by satellite altimetry. Journal of Geophysical Research, 104, 599–615.

    Google Scholar 

  • Okal, E. A., Fryer, G. J., Borrero, J. C., & Ruscher, C. (2002). The landslide and local tsunami of 13 September 1999 on Fatu-Hiva (Marquesas Islands; French Polynesia). Bulletin de la Société Géologique de France, 173, 359–367.

    Google Scholar 

  • Okal, E. A., Dengler, L., Araya, S., Borrero, J. C., Gomer, B., Koshimura, S., et al. (2002). A field survey of the Camaná, Peru tsunami of June 23, 2001. Seismological Research Letters, 73, 904–917.

    Google Scholar 

  • Okal, E. A., Fritz, H. M., Raveloson, R., Joelson, G., Pančošková, P., & Rambolamanana, G. (2006a). Madagascar field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra, 22, S263–S283.

    Google Scholar 

  • Okal, E. A., Sladen, A., & Okal, E. A.-S. (2006b). Rodrigues, Mauritius and Réunion Islands field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra, 22, S241–S261.

    Google Scholar 

  • Okal, E. A., Fritz, H. M., Raad, P. E., Synolakis, C. E., Al-Shijbi, Y., & Al-Saifi, M. (2006c). Oman field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra, 22, S203–S218.

    Google Scholar 

  • Okal, E. A., Borrero, J. C., & Synolakis, C. E. (2006d). Evaluation of tsunami risk from regional earthquakes at Pisco, Peru. Bulletin of the Seismological Society of America, 96, 1634–1648.

    Google Scholar 

  • Okal, E. A., Talandier, J., & Reymond, D. (2007). Quantification of hydrophone records of the 2004 Sumatra tsunami. Pure and Applied Geophysics, 164, 309–323.

    Google Scholar 

  • Okal, E. A., Fritz, F. M., & Sladen, A. (2009). 2004 Sumatra tsunami surveys in the Comoro Islands and Tanzania, and regional tsunami hazard from future Sumatra events. South African Journal of Geology, 112, 343–358.

    Google Scholar 

  • Okal, E. A., Fritz, H. M., Synolakis, C. E., Borrero, J. C., Weiss, R., Lynett, P. J., et al. (2010). Field survey of the Samoa tsunami of 29 September 2009. Seismological Research Letters, 81, 577–591.

    Google Scholar 

  • Okal, E. A., Kirby, S. H., & Kalligeris, N. (2016). The Showa Sanriku earthquake of 1933 March 2: A global seismological reassessment. Geophysical Journal International, 206, 1492–1514.

    Google Scholar 

  • Okal, E. A., Hyvernaud, O., Paris, A., Hébert, H., & Heinrich, P. (2019). Ancillary records of the Krakatau eruption and tsunami of 22 December 2018. Geophysical Research Abstracts, 21, EGU2019–11563 [abstract].

    Google Scholar 

  • Paris, A., Okal, E. A., Guérin, C., Heinrich, P., Schindelé, F., & Hébert, H. (2019). Numerical modeling of the June 17, 2017 landslide and tsunami events in Karrat Fjord, West Greenland. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-019-02123-.

    Google Scholar 

  • Pelinovsky, E., Zahibo, N., Dunkley, P., Edmonds, M., Herd, R., Talipova, T., et al. (2004). Tsunami generated by the volcano eruption on July 12–13, 2003 at Montserrat, Lesser Antilles. Science of Tsunami Hazards, 22, 44–57.

    Google Scholar 

  • Pelletier, B., Régnier, M., Calmant, S., Pillet, R., Cabioch, G., Lagabrielle, Y., et al. (2000). Le séisme d’Ambryn-Pentecôte du 26 novembre 1999 (\(M_w = 7,5\)): données préliminaires sur la séismicité, le tsunami et les déplacements associés. Comptes-Rendus de l’Académie des Sciences (Paris), Série 2, 331, 21–28.

    Google Scholar 

  • Peltier, W. R., & Hines, C. O. (1976). On the possible detection of tsunamis by a monitoring of the ionosphere. Journal of Geophysical Research, 81, 1995–2000.

    Google Scholar 

  • Plafker, G. L. (1997). Catastrophic tsunami generated by submarine slides and backarc thrusting during the 1992 earthquake on Eastern Flores I., Indonesia. Geological Society of America, Abstracts with Program, 29(5), 57 [abstract].

    Google Scholar 

  • Pollitz, F., Banerjee, P., Bürgmann, R., Hashimoto, M., & Choosakul, N. (2006). Stress changes along the Sunda trench following the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes. Geophysical Research Letters, 33(6), L06309, 4 pp.

    Google Scholar 

  • Power, W., Clark, K., King, D. N., Borrero, J., Howarth, J., Lane, E. M., et al. (2017). Tsunami runup and tide-gauge observations from the 14 November 2016 \(M=7.8\) Kaikōura earthquake, New Zealand. Pure and Applied Geophysics, 174, 2457–2473.

    Google Scholar 

  • Prasetya, G., Husrin, S., Kongko, W., Istyanto, D., Hidayat, R., Asvaliantina, V., et al. (2019). The 22nd December 2018 Anak Krakatau Tsunami in Sunda Straits, Indonesia. Geophysical Research Abstracts, 21, EGU2019–12276 [abstract].

    Google Scholar 

  • Press, F., & Harkrider, D. G. (1966). Air-Sea waves from the explosion of Krakatoa. Science, 154, 1325–1327.

    Google Scholar 

  • Rabinovich, A. B. (2019). Twenty-seven years of progress in the science of meteorological tsunamis following the 1992 Daytona Beach event. Pure and Applied Geophysics, submitted.

  • Rabinovich, A. B., & Thomson, R. E. (2007). The 26 December 2004 Sumatra tsunami: Analysis of tide gauge data from the world ocean, Part I. Indian Ocean and South Africa. Pure and Applied Geophysics, 164, 261–308.

    Google Scholar 

  • Rabinovich, A. B., Lobkovsky, L. I., Fine, I. V., Thomson, R. E., Ivelskaya, T. N., & Kulikov, E. A. (2008). Near-source observations and modeling of the Kuril Islands tsunamis of 15 November 2006 and 13 January 2007. Advances in Geosciences, 14, 105–116.

    Google Scholar 

  • Ruff, L. J. (1989). Do trench sediments affect great earthquake occurrence in subduction zones? Pure and Applied Geophysics, 129, 263–282.

    Google Scholar 

  • Ruff, L. J., & Kanamori, H. (1980). Seismicity and the subduction process. Physics of the Earth and Planetary Interiors, 23, 240–252.

    Google Scholar 

  • Satake, K., Shimazaki, K., Tsuji, Y., & Ueda, K. (1996). Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature, 379, 246–249.

    Google Scholar 

  • Shuto, N., & Matsutomi, H. (1995). Field survey of the 1993 Hokkaido-Nansei-Oki earthquake tsunami. Pure and Applied Geophysics, 144, 406–449.

    Google Scholar 

  • Smith, W. H. F., Scharroo, R., Titov, V. V., Arcas, D., & Arbic, B. K. (2005). Satellite altimeters measure tsunami. Oceanography, 18, 11–13.

    Google Scholar 

  • Solov’ev, S. L., & Go, C. N. (1984). Catalogue of tsunamis on the Eastern shore of the Pacific Ocean. Canadian Translations. Fisheries and Aquatic Sciences, 5078, 293. pp.

    Google Scholar 

  • Stein, R. S., Barka, A. A., & Dieterich, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128, 594–604.

    Google Scholar 

  • Stein, S., & Okal, E. A. (2005). Size and speed of the Sumatra earthquake. Nature, 434, 581–582.

    Google Scholar 

  • Stein, S., & Okal, E. A. (2007). Ultra-long period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process. Bulletin of the Seismological Society of America, 97, S279–S295.

    Google Scholar 

  • Sweet, S., & Silver, E. A. (2003). Tectonics and slumping in the source region of the 1998 Papua New Guinea tsunami from seismic reflection images. Pure and Applied Geophysics, 160, 1945–1968.

    Google Scholar 

  • Synolakis, C. E., & Kânoğlu, U. (2015). The Fukushima accident was preventable. Philosophical Transactions of the Royal Society (London), 373A, 20140374. 23 pp.

    Google Scholar 

  • Synolakis, C. E., & Okal, E. A. (2005). 1992–2002: Perspective on a decade of post-tsunami surveys. Advances in Natural and Technological Hazards. In K. Satake (Ed.), Tsunamis: Case studies and recent developments (Vol. 23, pp. 1–30). Berlin: Springer.

    Google Scholar 

  • Synolakis, C. E., Imamura, F., Tsuji, Y., Matsutomi, H., Tinti, S., Cook, B., et al. (1995). Damage, conditions of East Java tsunami analyzed, Eos. Transactions of the American Geophysical Union, 76(26), 257–264.

    Google Scholar 

  • Synolakis, C. E., Yalçıner, A. C., Borrero, J. C., & Plafker, G. L. (2002). Modeling of the November 3, 1994 Skagway, Alaska tsunami. Solutions to Coastal Disasters. In L. Wallendorf & L. Ewing (Eds.), Proceedings of the American Society of Civil Engineers (Vol. 78, pp. 915–927).

  • Synolakis, C. E., Bardet, J.-P., Borrero, J. C., Davies, H. L., Okal, E. A., Silver, E. A., et al. (2002). The slump origin of the 1998 Papua New Guinea tsunami. Proceedings of the Royal Society (London), Series A, 458, 763–789.

    Google Scholar 

  • Tadepalli, S., & Synolakis, C. E. (1994). The run-up of N-waves. Proceedings of the Royal Society (London), Series A, 445, 99–112.

    Google Scholar 

  • Tadepalli, S., & Synolakis, C. E. (1996). Model for the leading waves of tsunamis. Physical Review Letters, 77, 2141–2145.

    Google Scholar 

  • Tanioka, Y., & Satake, K. (1996). Tsunami generation by horizontal displacement of ocean bottom. Geophysical Research Letters, 23, 861–864.

    Google Scholar 

  • Taylor, F. W., Briggs, R. W., Frohlich, C., Brown, A., Hornback, M., Papabatu, A. K., et al. (2008). Rupture across arc segment and plate boundaries in the 1 April 2007 Solomons earthquake. Nature Geoscience, 1, 253–257.

    Google Scholar 

  • Thomson, R. E., Rabinovich, A. B., Kulikov, E. A., Fine, I. V., & Bornhold, B. D. (2001). On numerical simulation of the landslide-generated tsunami of November 3, 1994 in Skagway Harbor, Alaska. In G. Hebenstreit (Ed.), Tsunami research at the end of a critical decade (pp. 243–282). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Tinti, S., & Vannini, C. (1995). Tsunami trapping near circular islands. Pure and Applied Geophysics, 144, 595–620.

    Google Scholar 

  • Tinti, S., Manucci, A., Pagnoni, G., Armigliato, A., & Zaniboni, F. (2005). The 30 December 2002 landslide-induced tsunamis in Stromboli: Sequence of the events reconstructed from the eyewitness accounts. Natural Hazards Earth Systems Science, 5, 763–775.

    Google Scholar 

  • Tinti, S., Armigliato, A., Manucci, A., Pagnoni, G., Zaniboni, F., Yalçıner, A. C., et al. (2006). The generating mechanisms of the August 17, 1999 İzmit Bay (Turkey) tsunami: Regional (tectonic) and local (mass instabilities) causes. Marine Geology, 225, 311–330.

    Google Scholar 

  • Titov, V. V., & Synolakis, C. E. (1993). A numerical study of wave run-up of the September 2, 1992 Nicaraguan tsunami. In Y. Tsuchiya & N. Shuto (Eds.), Proceedings of the Tsunami Symposium, International Union of Geology and Geophysics Japan Society of Civil Engineers, (pp. 627–635). Wakayama, Japan.

  • Titov, V. V., & Synolakis, C. E. (1997). Extreme inundation flow during the Hokkaido-Nansei-Oki tsunami. Geophysical Research Letters, 24, 1315–1318.

    Google Scholar 

  • Titov, V. V., & Synolakis, C. E. (1998). Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal and Ocean Engineering, 124, 157–171.

    Google Scholar 

  • Titov, V. V., González, F. I., Bernard, E. N., Eble, M. C., Mofjeld, H. O., Newman, J. C., et al. (2005). Real-time tsunami forecasting: Challenges and solutions. Natural Hazards, 35, 41–58.

    Google Scholar 

  • Titov, V. V., Rabinovich, A. B., Mofjeld, H., Thomson, R. E., & González, F. I. (2005). The global reach of the 26 December 2004 Sumatra tsunami. Science, 309, 2045–2048.

    Google Scholar 

  • Titov, V. V., Kânoğlu, U., & Synolakis, C. E. (2016). Development of MOST for real-time tsunami forecasting. Journal of Waterway, Port, Coastal and Ocean Engineering, 142, 03116004, 16.

    Google Scholar 

  • Tsuji, Y., Matsutomi, H., Imamura, F., Takeo, M., Kawata, Y., Matsuyama, M., et al. (1995). Damage to coastal villages due to the 1992 Flores Island earthquake tsunami. Pure and Applied Geophysics, 144, 481–524.

    Google Scholar 

  • Tyler, R. H. (2005). A simple formula for estimating the magnetic fields generated by tsunami flow. Geophysical Research Letters, 32(9), L09608, 4 pp.

    Google Scholar 

  • Wallace, R. E., Pararas-Carayannis, G., Valenzuela, R., & Taggart, J. N. (1977). Earthquake and tsunamis of August 16, 1976, Mindanao, Philippines. Geological Society of America Abstracts with Program, 9, 523 [abstract].

    Google Scholar 

  • Ward, S. N. (1980). Relationships of tsunami generation and an earthquake source. Journal of Physics of the Earth, 28, 441–474.

    Google Scholar 

  • Wang, J., Ward, S. N., & Xiao, L. (2015). Numerical simulation of the December 4, 2007 landslide-generated tsunami in Chebalis Lake, Canada. Geophysical Journal International, 201, 372–376.

    Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. Eos, Transactions of the American Geophysical Union, 72, 441–446.

    Google Scholar 

  • Whitmore, P., Benz, H., Bolton, M., Crawford, G., Dengler, L., Fryer, G., et al. (2008). NOAA/West Coast and Alaska Tsunami Warning Center Pacific Ocean response criteria. Science of Tsunami Hazards, 27(2), 1–21.

    Google Scholar 

  • Ye, L., Kanamori, H., Avouac, J.-P., Li, L., Cheung, K. F., & Lay, T. (2016). The 16 April 2016, \(M_w =7.8\) (\(M_s =7.5\)) Ecuador earthquake: A quasi-repeat of the 1942 \(M_s=7.5\) earthquake and partial re-rupture of the 1906 \(M_s =8.6\) Colombia–Ecuador earthquake. Earth and Planetary Science Letters, 454, 248–258.

    Google Scholar 

  • Yeh, H., Imamura, F., Synolakis, C. E., Tsuji, Y., Liu, P. L.-F., & Shi, S. (1993). The Flores Island tsunami. Eos, Transactions of the American Geophysical Union, 74, 369–373.

    Google Scholar 

  • Yeh, H., Liu, P. L.-F., Briggs, M., & Synolakis, C. E. (1994). Propagation and amplification of tsunamis at coastal boundaries. Nature, 372, 353–355.

    Google Scholar 

  • Yeh, H., Titov, V. V., Gusiakov, V., Pelinovsky, E., Khramushin, V., & Kaistrenko, V. (1995). The 1994 Shikotan tsunamis. Pure and Applied Geophysics, 144, 855–874.

    Google Scholar 

  • Yuan, X., Kind, R., & Pedersen, H. (2005). Seismic monitoring of the Indian Ocean tsunami. Geophysical Research Letters, 32(15), L15308, 4 pp.

    Google Scholar 

Download references

Acknowledgements

I am grateful to my many colleagues and students over the years, who helped me discover challenges in so many theoretical, experimental or field aspects of tsunami science; they are too numerous to list, but they know who they are. I thank Editor A.B. Rabinovich for motivating me to write this review, and for pointing out the importance of a few events which I had originally left aside. I am very grateful to Paul Whitmore and Slava Gusiakov for constructive reviews. Figure 1 was drafted using the GMT software (Wessel and Smith 1991).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile A. Okal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okal, E.A. Twenty-Five Years of Progress in the Science of “Geological” Tsunamis Following the 1992 Nicaragua and Flores Events. Pure Appl. Geophys. 176, 2771–2793 (2019). https://doi.org/10.1007/s00024-019-02244-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02244-x

Keyword

Navigation