Advertisement

Spectral Decay Parameter (k) of Western Iran Using Accelerograms Recorded up to 2018

  • Ali Alibazi
  • Hamid SaffariEmail author
Article
  • 29 Downloads

Abstract

An important parameter that controls strong ground motion at high frequencies (higher than 1 Hz) is the spectral decay or kappa (k) parameter. This parameter is a linear decay factor for Fourier spectrum of acceleration on a linear-logarithmic scale within a certain frequency range, which indicates the range of attenuation of high frequency energy. This parameter is used as a key input for the simulation of strong ground motion through a random method. This study aims to estimate the kappa parameter for the west of Iran that has a high seismic activity. Hence 10 reference earthquakes as well as 76 accelerograms recorded from 1973 until 2018 are used, including the 7.3-magnitude Ezgeleh, Kermanshah earthquake on November 12, 2017. The k is derived for the latest seismotectonic zoning map of Iran to enhance the accuracy of calculations and only the records in which the reference earthquake and accelerograms occurred in the same zone are considered in the k equation. The k parameter is calculated separately for each horizontal component and for the mean. Then, the linear relationships between the kappa and distance are separately calculated and analyzed for each seismic zone. An accumulative equation is also proposed for all zones. The presented equations indicate that the near surface attenuation parameter k0 for the west seismic zones of Iran varies from 0.0331 to 0.0398. This parameter can be used effectively to calculate the strong ground motion in the zones using synthetic methods.

Keywords

Spectral decay parameter (k) seismic provinces of western Iran distance effect acceleration Fourier spectrum acceleration 

Notes

References

  1. Anderson, J. G., & Hough, S. E. (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America, 74(5), 1969–1993.Google Scholar
  2. Bay, F., Fäh, D., Malagnini, L., & Giardini, D. (2003). Spectral shear-wave ground-motion scaling in Switzerland. Bulletin of the Seismological Society of America, 93(1), 414–429.CrossRefGoogle Scholar
  3. Bay, F., Wiemer, S., Fäh, D., & Giardini, D. (2005). Predictive ground motion scaling in Switzerland: Best estimates and uncertainties. Journal of Seismology, 9, 223–240.CrossRefGoogle Scholar
  4. Castro, R. R., Pacor, F., Sala, A., & Petrungaro C. (1996). S wave attenuation and site effects in the region of Friuli, Italy. Journal of Geophysical Research, 101(B10), 22355–22369.CrossRefGoogle Scholar
  5. Castro, R. R., Trojani, L., Monachesi, G., Mucciarelli, M., & Cattaneo, M. (2000). The spectral decay parameter k in the region of Umbria-Marche, Italy. Journal of Geophysical Research, 105, 23811–23823.CrossRefGoogle Scholar
  6. Cormier, V. F. (1982). The effect of attenuation on seismic body waves. Bulletin of the Seismological Society of America, 72, S169–S200.Google Scholar
  7. Douglas, J., Gehl, P., Bonilla, L. F., & Gelis, C. (2010). A kappa model for mainland France. Pure and applied Geophysics, 167, 1303–1315.CrossRefGoogle Scholar
  8. Douglas, P., Gehl, L. B., Bonilla, O., Scotti, J., Régnier, A.-M., & Duval, E. Bertrand. (2009). Making the most of available site information for empirical ground-motion prediction. Bulletin Seismological Society of America, 99(3), 1502–1520.CrossRefGoogle Scholar
  9. Drouet, S., Theodulidis, N., & Savvaidis, A. (2008). Site effects from parameterised generalised inversions. ESC 31st General Assembly, Hersonissos, Crete, Greece, 8–12 Sept.Google Scholar
  10. Emami, R., Rezaei, R., & Rezapour, M. (2014). Determination of empirical distance attenuation and the local-magnitude scale for northwest Iran with JHD technique. Journal of Geosciences, 23(92), 85–92.Google Scholar
  11. Erdik, M., Sestyan, K., Demircioglu, M. B., Tuzun, C., Giardini, D., Gulen, L., et al. (2012). Assessment of seismic hazard in the Middle East and Caucasus: EMME (Earthquake Model of Middle East) project. In: Proceedings of 15th world conference on earthquake engineering, Lisbon, Portugal, 24–28 September 2012, Paper number 2100.Google Scholar
  12. Fernández-Heredia, A. I., Huerta-Lopez, C. I., Castro-Escamilla, R. R., & Romo-Jones, J. (2012). Soil damping and site dominant vibration period determination, by means of random decrement method and its relationship with the site-specific spectral decay parameter kappa. Soil Dynamics and Earthquake Engineering, 43, 237–246.CrossRefGoogle Scholar
  13. Gerami, M., & Mehdizadeh, K. (2007). Fourier series applications in civil engineering. In 2nd National conference on rehabilitation and reinforcement of Iran, Kerman, National Center for Rehabilitation of Iran.Google Scholar
  14. Ghasemi, H., Sinaeain, F., & Baitullahi, A. (2003). Study of the effect of the path on the kappa drop parameter using the data of the strong ground motion of Bam earthquake. In International Conference on Earthquake (Bam Disaster Memorial), Tehran, Iran.Google Scholar
  15. Hanks, T. C. (1979). b-values and w- ~ seismic source models: Implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion. Journal of Geophysical Research, 84, 2235–2242.CrossRefGoogle Scholar
  16. Hanks, T. C. (1982). fmax. Bulletin of the Seismological Society of America, 72(6A), 1867–1879.Google Scholar
  17. Hatzidimitriou, P., Papazachos, C., Kiratzi, A. & Theodulidis, N., (1993). Estimation of attenuation structure and local earthquake magnitude based on accleration records in Greece. Tectonophysics, 217, 243–253.CrossRefGoogle Scholar
  18. Hough, S. E, & Anderson, J. G. (1988). High-frequency spectra observed at Anza, California: Implications for Q structure. Bulletin of the Seismological Society of America, 78(2), 692–770.Google Scholar
  19. Karimiparidari, S., Zare, M., & Memarian, H. (2011). New seismotectonic zoning map of Iran. In Proceeding of the 6th International Conference on Seismology and Earthquake Engineering (SEE6). CD-ROM.Google Scholar
  20. Kilb, D., Biasi, G., Anderson, J., Brune, J., Peng, Z., & Vernon, F. L. (2012). A comparison of spectral parameter kappa from small and moderate earthquakes using Southern California ANZA seismic network data. Bulletin of the Seismological Society of America, 102(1), 284–300.CrossRefGoogle Scholar
  21. Ktenidou, O.-J., Drouet, S., Theodulidis, N., Chaljub, M., Arnaouti, S., & Cotton, F. (2012). Estimation of kappa (κ) for a sedimentary basin in Greece (EUROSEISTEST): Correlation to site characterization parameters. In Proceedings of 15th World Conference of Earthquake Engineering, Lisbon, Portugal, 24–28 September.Google Scholar
  22. Ktenidou, O.-J., Abrahamson, N. A., Drouet, S., & Cotton, F. (2015). Understanding the physics of kappa (κ): Insights from a downhole array. Geophysical Journal International, 203, 678–691.CrossRefGoogle Scholar
  23. Ktenidou, O. J., Gélis, C., & Bonilla, L. F. (2013). A study on the variability of kappa (κ) in a borehole: Implications of the computation process. Bulletin of the Seismological Society of America, 103(2A), 1048–1068.CrossRefGoogle Scholar
  24. Kumar, S., Kumar, D., Rastogi, B. K., & Singh, A. P. (2018). Kappa (κ) model for Kachchh region of Western India. Geomatics, Natural Hazards and Risk, 9(1), 442–455.CrossRefGoogle Scholar
  25. Mahood, M., Akbarzadeh, N., & Hamzehlou, H. (2014). Simulation of the first earthquake August 11, 2012 Ahar-Varzaghan using stochastic finite fault method. Journal of the Earth and Space Physics, 40(2), 31–43.Google Scholar
  26. Morasca, P., Malagnini, L., Akinci, A., Spallarossa, D., & Herrmann, R. B. (2006). Ground-motion scaling in the western Alps. Journal of Seismology, 10(3), 315–333.  https://doi.org/10.1007/s10950-006-9019-x.CrossRefGoogle Scholar
  27. Motazedian, D. (2006). Region-specific key seismic parameters for earthquakes in northern Iran. Bulletin of the Seismological Society of America, 96, 1383–1395.CrossRefGoogle Scholar
  28. Purvance, M. D., & Anderson, J. G. (2003). A comprehensive study of the observed spectral decay in strong-motion accelerations recorded in Guerrero, Mexico. Bulletin of the Seismological Society of America, 93, 600–611.CrossRefGoogle Scholar
  29. Samaei, M., Miyajima, M., Yazdani, A., & Jaafari, F. (2016) High frequency decay parameter (kappa) for Ahar-Varzaghan double earthquakes, Iran (Mw 6.5 & 6.3). Journal of Earthquake and Tsunami.  https://doi.org/10.1142/S1793431116400066.Google Scholar
  30. Scordilis, E. M. (2006). Empirical global relations converting MS and mb to moment magnitude. Journal of Seismology, 10, 225–236.CrossRefGoogle Scholar
  31. Seismosoft. (2016). SeismoSignal—A computer program for signal processing of time-histories. http://www.seismosoft.com. Accessed 7 June 2018.
  32. Shoja-Taheri, J., Naserieh, S., & Ghofrani, H. (2007). ML and MW scale in the Iranian Pelateau base on the strong motion records. Bulletin of the Seismological Society of America, 97(2), 661–669.CrossRefGoogle Scholar
  33. Stanko, D., Markušić, S., Ivančić, I., Mario, G., & Gülerce, Z. (2017). Preliminary estimation of kappa parameter in Croatia. In World multidisciplinary earth sciences symposium. IOP Conference Series: Earth and Environmental Science, 95, 032014.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Shahid Beheshti UniversityTehranIran
  2. 2.Department of Structure and Earthquake Engineering, Faculty of Civil, Water and Environmental EngineeringShahid Beheshti UniversityTehranIran

Personalised recommendations