Skip to main content

Fundamental Solutions to Static and Dynamic Loads for Homogeneous Reduced Micropolar Half-Space

Abstract

Analytical expressions for displacements and rotations in a homogeneous reduced micropolar half-space subjected to a finite buried source are derived using the method of potentials. Explicit solutions for displacements and rotations are derived for a uniformly distributed force acting over a circular region in the horizontal or vertical direction. The obtained solutions for displacements are validated against those available in literature for a classical elastic half-space. Finally, Green’s functions for displacements and rotations are derived for a unit impulse applied in the horizontal or vertical direction. In addition to analytical solutions, the paper also compares the dispersion phenomenon of compression and shear waves propagating in a reduced micropolar half-space with different material properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  • Abreu, R., Thomas, C., & Durand, S. (2018). Effect of observed micropolar motions on wave propagation in deep Earth minerals. Physics of the Earth and Planetary Interiors, 276, 215–225.

    Article  Google Scholar 

  • Bouchon, M. (1981). A simple method to calculate Green’s functions for elastic layered media. Bulletin of the Seismological Society of America, 71(4), 959–971.

    Google Scholar 

  • Cosserat, E., & Cosserat, F. (1909). Theory of deformable bodies. Hondo: Scientific Library.

    Google Scholar 

  • Eringen, A. C. (1999). Microcontinuum field theories: I. Foundations and solids. New York: Springer.

    Book  Google Scholar 

  • Gade, M., & Raghukanth, S. T. G. (2015). Seismic ground motion in micropolar elastic half-space. Applied Mathematical Modelling, 39(23–24), 7244–7265.

    Article  Google Scholar 

  • Grekova, E. F., Kulesh, M. A., & Herman, G. C. (2009). Waves in linear elastic media with microrotations, part 2: Isotropic reduced Cosserat model. Bulletin of the Seismological Society of America, 99(2B), 1423–1428.

    Article  Google Scholar 

  • Hart, G. C., Lew, M., & DiJulio, R. M. (1975). Torsional response of high-rise buildings. Journal of the Structural Division, 101(2), 397–416.

    Google Scholar 

  • Hassanpour, S., & Heppler, G. R. (2017). Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations. Mathematics and Mechanics of Solids, 22(2), 224–242.

    Article  Google Scholar 

  • Hisada, Y. (1994). An efficient method for computing Green’s functions for a layered half-space at large epicentral distances. Bulletin of the Seismological Society of America, 84(5), 1456–1472.

    Google Scholar 

  • Igel, H., Schreiber, U., Flaws, A., Schuberth, B., Velikoseltsev, A., & Cochard, A. (2005). Rotational motions induced by the M.81 Tokachi-oki earthquake. Geophysical Research Letters, 8, 32.

    Google Scholar 

  • Kanth, S. T. (2008). Source mechanism model for ground motion simulation. Applied Mathematical Modelling, 32(7), 1417–1435.

    Article  Google Scholar 

  • Kennett, B. (1983). Seismic wave propagation in stratified media. Canberra: ANU E Press.

    Google Scholar 

  • Kulesh, M. (2009). Waves in linear elastic media with microrotations, Part 1: Isotropic full Cosserat model. Bulletin of the Seismological Society of America, 99(2 B), 1416–1422.

    Article  Google Scholar 

  • Kurnosov, A., Marquardt, H., Frost, D. J., Boffa Ballaran, T., & Ziberna, L. (2017). Evidence for a \(\mathrm{Fe}^{3+}\)-rich pyrolitic lower mantle from (Al, Fe)-bearing bridgmanite elasticity data. Nature, 543(7646), 543–546.

    Article  Google Scholar 

  • Nigbor, R. L. (1994). Six-degree-of-freedom ground-motion measurement. Bulletin of the Seismological Society of America, 84(5), 1665–1669.

    Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Google Scholar 

  • Pak, R. Y. S. (1987). Asymmetric wave propagation in an elastic half-space by a method of potentials. Journal of Applied Mechanics-Transactions of the ASME, 54(1), 121–126.

    Article  Google Scholar 

  • Pak, R. Y. S., & Guzina, B. (2002). Three-dimensional Green’s functions for a multilayered half-space in displacement potentials. Journal of Engineering Mechanics, 128(4), 449–461.

    Article  Google Scholar 

  • Pekeris, C. L., & Longman, I. M. (1958). The motion of the surface of a uniform elastic half-space produced by a buried torque-pulse. Geophysical Journal of the Royal Astronomical Society, 1(2), 146–153.

    Article  Google Scholar 

  • Piessens, R. (2000). The Hankel transform. The Transforms and Applications Handbook, 2, 9.

    Google Scholar 

  • Schwartz, L. M., Johnson, D. L., & Feng, S. (1984). Vibrational modes in granular materials. Physical Review Letters, 52(10), 831–834.

    Article  Google Scholar 

  • Takeo, M. (1998). Ground rotational motions recorded in near-source region of earthquakes. Geophysical Research Letters, 25(6), 789–792.

    Article  Google Scholar 

  • Teisseyre, R. (1973). Earthquake processes in a micromorphic continuum. Pure and Applied Geophysics PAGEOPH, 102(1), 15–28.

    Article  Google Scholar 

  • Teisseyre, R. (2011). Why rotation seismology: Confrontation between classic and asymmetric theories. Bulletin of the Seismological Society of America, 101(4), 1683–1691.

    Article  Google Scholar 

  • Tsai, N. C., & Housner, G. W. (1970). Calculation of surface motions of a layered half-space. Bulletin of the Seismological Society of America, 60(5), 1625–1651.

    Google Scholar 

  • Yin, J., Nigbor, R. L., Chen, Q., & Steidl, J. (2016). Engineering analysis of measured rotational ground motions at GVDA. Soil Dynamics and Earthquake Engineering, 87, 125–137.

    Article  Google Scholar 

  • Yong, Y., Zhang, R., & Yu, J. (1997a). Motion of foundation on a layered soil medium—I. Impedance characteristics. Soil Dynamics and Earthquake Engineering, 16(5), 295–306.

    Article  Google Scholar 

  • Yong, Y., Zhang, R., & Yu, J. (1997b). Motion of foundation on a layered soil medium—II. Response analysis. Soil Dynamics and Earthquake Engineering, 16(5), 307–316.

    Article  Google Scholar 

  • Zerva, A., & Zhang, O. (1997). Correlation patterns in characteristics of spatially variable seismic ground motions. Earthquake Engineering and Structural Dynamics, 26(1), 19–39.

    Article  Google Scholar 

  • Zhang, R. (2000). Some observations of modelling of wave motion in layer-based elastic media. Journal of Sound and Vibration, 229(5), 1193–1212.

    Article  Google Scholar 

  • Zhang, R., Yong, Y., & Lin, Y. K. (1991a). Earthquake ground motion modeling. I: Deterministic point source. Journal of Engineering Mechanics, 117(9), 2114–2132.

    Article  Google Scholar 

  • Zhang, R., Yong, Y., & Lin, Y. K. (1991b). Earthquake ground motion modeling. II: Stochastic line source. Journal of Engineering Mechanics, 117(9), 2133–2148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. G. Raghukanth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhabu, A.C., Raghukanth, S.T.G. Fundamental Solutions to Static and Dynamic Loads for Homogeneous Reduced Micropolar Half-Space. Pure Appl. Geophys. 176, 4881–4905 (2019). https://doi.org/10.1007/s00024-019-02225-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02225-0

Keywords

  • Reduced micropolar medium
  • seismic wave propagation
  • Green’s functions
  • dispersion analysis