Skip to main content
Log in

The High-Frequency Decay Parameter (Kappa) in Taiwan

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The high-frequency decay parameter kappa (κ) was computed by fitting Fourier amplitude spectra from the seismic network of the Taiwan Strong Motion Instrumentation Program (TSMIP). The κ of shear horizontal waves (SH waves) was calculated for individual recordings, and the relationship between κ values and the epicentral distance (Repi) of each station was derived for each station. The κ value at Repi = 0 (denoted as κ0) can be used as a site parameter. There are totally 26,277 seismograms that have been recorded at 679 TSMIP stations over the period of 1993 through 2014 with local magnitudes of 4.0–7.1 and focal depths less than 30 km. The estimation of κ0 for Taiwan ranges from 0.0208 to 0.147 s, and the spatial distribution of κ0 was closely related to geology and velocity. The site-specific κ0 values from 425 stations were correlated with the averaged shear wave velocity of the top 30 m of strata (VS30), and the relationship could be described as κ0 = (0.125 ± 0.005) − (0.011 ± 0.001) × ln(VS30), and an acceptable linear correlation (R2 = 0.57) was performed. The results may be used in the future application of ground motion prediction equations (GPMEs) and serve as simulation parameters. Also, the relationship between κ0 and the depth to engineering rock (Z1.0) is not well correlated, whereas an acceptable correlation exists between κ0 and other site proxies (i.e., elevation and resonant frequency).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abrahamson, N., & Silva, W. (2008). Summary of the Abrahamson & Silva NGA ground-motion relations. Earthquake Spectra,24(1), 67–97. https://doi.org/10.1193/1.2924360.

    Article  Google Scholar 

  • Al Atik, L., Kottke, A., Abrahamson, N., Hollenback, J., et al. (2014). Kappa (κ) scaling of ground-motion prediction equations using an inverse random vibration theory approach. Bulletin of the Seismological Society of America,104(1), 336–346. https://doi.org/10.1785/0120120200.

    Article  Google Scholar 

  • Anderson, J. G., & Hough, S. E. (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America,74(5), 1969–1993.

    Google Scholar 

  • Atkinson, G. M., & Boore, D. M. (2006). Earthquake ground-motion prediction equations for Eastern North America. Bulletin of the Seismological Society of America,96(6), 2181–2205. https://doi.org/10.1785/0120050245.

    Article  Google Scholar 

  • Baltay, A. S., & Hanks, T. C. (2014). Understanding the magnitude dependence of PGA and PGV in NGA-West2 data. Bulletin of the Seismological Society of America,104(6), 2851–2865. https://doi.org/10.1785/0120130283.

    Article  Google Scholar 

  • Beresnev, I. A., & Atkinson, G. M. (1997). Modeling finite-fault radiation from the ω n spectrum. Bulletin of the Seismological Society of America,87(1), 67–84.

    Google Scholar 

  • Beresnev, I. A., & Atkinson, G. M. (1998). FINSIM—A FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seismological Research Letters,69(1), 27–32.

    Article  Google Scholar 

  • Boore, D. M. (2003). Simulation of ground motion using the stochastic method. Pure and Applied Geophysics,160, 635–676.

    Article  Google Scholar 

  • Boore, D. M. (2004). Estimating V S(30) (or NEHRP site classes) from shallow velocity models (Depths < 30 m). Bulletin of the Seismological Society of America,94(2), 591–597.

    Article  Google Scholar 

  • Boore, D. M., & Joyner, W. B. (1997). Site amplifications for generic rock sites. Bulletin of the Seismological Society of America,87(2), 327–341.

    Google Scholar 

  • Bora, S. S., Scherbaum, F., Kuehn, N., Stafford, P., & Edwards, B. (2015). Development of a response spectral ground-motion prediction equation (GMPE) for seismic-hazard analysis from empirical Fourier spectral and duration models. Bulletin of the Seismological Society of America,105(4), 2192–2218.

    Article  Google Scholar 

  • Building Seismic Safety Council (BSSC). (2001). NEHRP recommended provisions for seismic regulations for new buildings and other structures, Part 1: Provisions, prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency (Report FEMA 368), Washington, D.C., 2000 Edition.

  • Campbell, K. W. (2003). Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground motion (attenuation) relations in eastern North America. Bulletin of the Seismological Society of America,93(3), 1012–1033.

    Article  Google Scholar 

  • Campbell, K. W. (2009). Estimates of shear-wave Q and κ 0 for unconsolidated and semiconsolidated sediments in eastern North America. Bulletin of the Seismological Society of America,99(4), 2365–2392. https://doi.org/10.1785/0120080116.

    Article  Google Scholar 

  • Castellaro, S., Mulargia, F., Rossi, P. L., et al. (2008). V S30: Proxy for seismic amplification? Seismological Research Letters,79(4), 540–543.

    Article  Google Scholar 

  • Castro, R. R., & Avila-Barrientos, L. (2015). Estimation of the spectral parameter kappa in the region of the Gulf of California, Mexico. Journal of Seismology,19, 809–829. https://doi.org/10.1007/s10950-015-9496-x.

    Article  Google Scholar 

  • Chandler, A., Lam, N., Tsang, H., et al. (2006). Near-surface attenuation modelling based on rock shear-wave velocity profile. Soil Dynamics and Earthquake Engineering,26(11), 1004–1014. https://doi.org/10.1007/s10950-005-9006-7.

    Article  Google Scholar 

  • Chen, K. P., Wang, C. Y., Tsai, Y. B., Chang, W. Y., et al. (2013). A seismic structure study in the Kaoping area, southwestern Taiwan. Bulletin of the Seismological Society of America,103, 306–316.

    Article  Google Scholar 

  • Chiang, S. C. (1971). Seismic study of the Chaochou structure, Pingtung, Taiwan. Petroleum Geology of Taiwan,8, 281–294.

    Google Scholar 

  • Cormier, V. F. (1982). The effect of attenuation on seismic body waves. Bulletin of the Seismological Society of America,72(1), 169–200.

    Google Scholar 

  • Cotton, F., Scherbaum, F., Bommer, J. J., Bungum, H., et al. (2006). Criteria for selecting and adjusting ground-motion models for specific target regions: Application to Central Europe and rock sites. Journal of Seismology,10, 137–156.

    Article  Google Scholar 

  • Douglas, J., Bungum, H., Scherbaum, F., et al. (2006). Ground-motion prediction equations for southern Spain and southern Norway obtained using the composite model perspective. Journal of Earthquake Engineering,10, 33–72.

    Article  Google Scholar 

  • Douglas, J., Gehl, P., Bonilla, L. F., Gélis, C., et al. (2010). A κ model for mainland France. Pure and Applied Geophysics,167, 1303–1315. https://doi.org/10.1007/s00024-010-0146-5.

    Article  Google Scholar 

  • Edwards, B., Fäh, D., Giardini, D., et al. (2011). Attenuation of seismic shear wave energy in Switzerland. Geophysical Journal International,185, 967–984. https://doi.org/10.1111/j.1365-246X.2011.04987.x.

    Article  Google Scholar 

  • Edwards, B., Ktenidou, O. J., Cotton, F., Abrahamson, N., Van Houtte, C., Fäh, D., et al. (2015). Epistemic uncertainty and limitations of the κ 0 model for near-surface attenuation at hard rock sites. Geophysical Journal International,202, 1627–1645.

    Article  Google Scholar 

  • Fu, L., & Li, X. J. (2016). The characteristics of high-frequency attenuation of shear waves in the Longmen Shan and Adjacent Regions. Bulletin of the Seismological Society of America.,106(5), 1979–1990. https://doi.org/10.1785/0120160002.

    Article  Google Scholar 

  • Gentili, S., & Franceschina, G. (2011). High frequency attenuation of shear waves in the southeastern Alps and northern Dinarides. Geophysical Journal International,185(3), 1393–1416.

    Article  Google Scholar 

  • Graves, R. W., & Pitarka, A. (2010). Broadband ground-motion simulation using a hybrid approach. Bulletin of the Seismological Society of America,100(5A), 2095–2123. https://doi.org/10.1785/0120100057.

    Article  Google Scholar 

  • Hanks, T. C. (1979). b-values and ω γ seismic source models: implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion. Journal of Geophysical Research,84, 2235–2242.

    Article  Google Scholar 

  • Hanks, T. C. (1982). f max. Bulletin of the Seismological Society of America,72(6A), 1867–1880.

    Google Scholar 

  • Hassani, B., & Atkinson, G. (2018). Adjustable generic ground-motion prediction equation based on equivalent point-source simulations: Accounting for Kappa effects. Bulletin of the Seismological Society of America.,108(2), 913–928. https://doi.org/10.1785/0120170333.

    Article  Google Scholar 

  • Holzer, T. L., Padovani, A. C., Bennett, M. J., Noce, T. E., Tinsley, J. C., et al. (2005). Mapping NEHRP V S30 site classes. Earthquake Spectra,21, 353–370.

    Article  Google Scholar 

  • Hough, S. E., Anderson, J. G., Brune, J., Vernon, F., III, Berger, J., Fletcher, J., et al. (1988). Attenuation near Anza, California. Bulletin of the Seismological Society of America.,78(2), 672–691.

    Google Scholar 

  • Huang, J. Y. (2009). Using microtremor measurement to study the site effect in Taiwan area. Master thesis, National Central University (in Chinese with English abstract), p. 240.

  • Huang, M. W., Wang, J. H., Hsieh, H. H., Wen, K. L., Ma, K. F., et al. (2005). Frequency-dependent sites amplifications evaluated from well-logging data in central Taiwan. Geophysical Research Letters,32, L21302. https://doi.org/10.1029/2005GL023527.

    Article  Google Scholar 

  • Huang, M. W., Wang, J. H., Ma, K. F., Wang, C. Y., Hung, J. H., Wen, K. L., et al. (2007). Frequency-dependent site amplifications with f ≥ 0.01 Hz evaluated from the velocity and density models in Central Taiwan. Bulletin of the Seismological Society of America,97(2), 624–637. https://doi.org/10.1785/0120060139.

    Article  Google Scholar 

  • Huang, M. W., Wen, K. L., Chang, S. C., Chang, C. L., Liu, S. Y., Chen, K. P., et al. (2017). The high–cut parameter (kappa) for the near–surface geology in and around the Taipei basin, Taiwan. Bulletin of the Seismological Society of America.,107(3), 1254–1264.

    Article  Google Scholar 

  • Kilb, D., Biasi, G., Anderson, J. G., Brune, J., Peng, Z., Vernon, F. L., et al. (2012). A comparison of spectral parameter kappa from small and moderate earthquakes using southern California ANZA seismic network data. Bulletin of the Seismological Society of America,102, 284–300.

    Article  Google Scholar 

  • Ktenidou, O. J., Abrahamson, N., Drouet, S., Cotton, F., et al. (2015). Understanding the physics of kappa (κ): Insights from a downhole array. Geophysical Journal International,203, 678–691. https://doi.org/10.1093/gji/ggv315.

    Article  Google Scholar 

  • Ktenidou, O. J., Abrahamson, N., Silva, W., Darragh, R., et al. (2016). A methodology for the estimation of kappa (κ) for large datasets. Example application to rock sites in the NGA-East database. Pacific Earthquake Engineering Research Center, PEER report 2016/01, p. 117.

  • Ktenidou, O. J., Cotton, F., Abrahamson, N., Anderson, J. G., et al. (2014). Taxonomy of kappa: A review of definitions and estimation approaches targeted to applications. Seismological Research Letters,85, 135–146.

    Article  Google Scholar 

  • Ktenidou, O. J., Silva, W., Darragh, R., Abrahamson, N., Kishida, T., et al. (2017). Squeezing kappa (κ) out of the transportable array: A strategy for using bandlimited data in regions of sparse seismicity. Bulletin of the Seismological Society of America.,107(1), 256–275.

    Article  Google Scholar 

  • Kuo, C. H., Chen, C. T., Lin, C. M., Wen, K. L., Huang, J. Y., Chang, S. C., et al. (2016). S-Wave velocity structure and site effect parameters derived by microtremor arrays in the western plain of Taiwan. Journal of Asian Earth Sciences,128, 27–41. https://doi.org/10.1016/j.jseaes.2016.07.012.

    Article  Google Scholar 

  • Kuo, C. H., Wen, K. L., Hsieh, H. H., Chang, T. M., Lin, C. M., Chen, C. T., et al. (2011). Evaluating empirical regression equations for V s and estimating V S30 in northeastern Taiwan. Soil Dynamics and Earthquake Engineering,31, 431–439. https://doi.org/10.1016/j.soildyn.2010.09.012.

    Article  Google Scholar 

  • Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., Kuo, K. W., et al. (2012). Site classification and V S30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology,129–130, 68–75. https://doi.org/10.1016/j.enggeo.2012.01.013.

    Article  Google Scholar 

  • Kwok, O. L. A., Stewart, J. P., Kwak, D. Y., Sun, P. L., et al. (2018). Taiwan-specific model for VS30 prediction considering between-proxy correlations. Earthquake Spectra, 34(4), 1973–1993.

    Article  Google Scholar 

  • Lai, T. S., Mittal, H., Chao, W. A., Wu, Y. M., et al. (2016). A study on kappa value in Taiwan using borehole and surface seismic array. Bulletin of the Seismological Society of America,106, 1509–1517.

    Article  Google Scholar 

  • Laurendeau, A., Bard, P. Y., Hollender, F., Ktedinou, O. J., Foundotos, L., Hernandez, B., Perron, V., et al. (2016). Prediction of reference motions (1000\Vs\3000 m/s) from corrected KiK-net records of the local site effects. In: 5th IASPEI/IAEE international symposium: effects of surface geology on seismic motion, August 15–17, Taipei.

  • Laurendeau, A., Bard, P. Y., Hollender, F., Perron, V., Foundotos, L., Ktenidou, O. J., et al. (2018). Derivation of consistent hard rock (1000 < VS < 3000 m/s) GMPEs from surface and down-hole recordings: analysis of KiK-net data. Bulletin of Earthquake Engineering,16(6), 2253–2284. https://doi.org/10.1007/s10518-017-0142-6.

    Article  Google Scholar 

  • Laurendeau, A., Cotton, F., Ktenidou, O. J., Bonilla, L. F., Hollender, F., et al. (2013). Rock and stiff-soil site amplification: Dependency on V S30 and kappa (κ 0). Bulletin of the Seismological Society of America,103(6), 3131–3148. https://doi.org/10.1785/0120130020.

    Article  Google Scholar 

  • Lay, T., & Wallace, T. C. (1995). Modern global seismology (p. 521). San Diego: Academic Press.

    Google Scholar 

  • Lee, V. W., & Trifunac, M. D. (2010). Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification? Soil Dynamics and Earthquake Engineering,30, 1250–1258.

    Article  Google Scholar 

  • Lin, C. M., Chang, T. M., Wen, K. L., Huang, Y. C., Chiang, H. J., Kuo, C. H., et al. (2009). Shallow s-wave velocity structures in the western coastal plain of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences,20(2), 299–308. https://doi.org/10.3319/TAO.2007.12.10.01.

    Article  Google Scholar 

  • Liu, Z., Wuenscher, M. E., Herrmann, R. B., et al. (1994). Attenuation of body waves in the central New Madrid seismic zone. Bulletin of the Seismological Society of America,84(4), 1112–1122.

    Google Scholar 

  • Ma, K. F., Mori, J. M., Lee, S. J., Yu, S. B., et al. (2001). Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, Earthquake. Bulletin of the Seismological Society of America,91(5), 1069–1087.

    Article  Google Scholar 

  • Mai, P. M., Imperatori, W., Olsen, K. B., et al. (2010). Hybrid broadband ground-motion simulations: combining long-period deterministic synthetics with high-frequency multiple S-to-S backscattering. Bulletin of the Seismological Society of America,100(5), 2124–2142. https://doi.org/10.1785/012008019.

    Article  Google Scholar 

  • Mayor, J., Bora, S. S., Cotton, F., et al. (2018). Capturing regional variations of hard-rock κ 0 from coda analysis. Bulletin of the Seismological Society of America,108(1), 399–408. https://doi.org/10.1785/0120170153.

    Article  Google Scholar 

  • Parolai, S., & Bindi, D. (2004). Influence of soil-layer properties on κ evaluation. Bulletin of the Seismological Society of America,94, 349–356.

    Article  Google Scholar 

  • Shin, T. C., Chang, C. H., Pu, H. C., Lin, H. W., Leu, P. L., et al. (2013). The geophysical database management system in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences,24(1), 11–18. https://doi.org/10.3319/TAO.2012.09.20.01(T).

    Article  Google Scholar 

  • Silva, W., Darragh, R., Gregor, N., Martin, G., Abrahamson, N., Kircher, C., et al. (1998). Reassessment of site coefficients and near-fault factors for building code provisions. Technical Report Program Element II: 98-HQGR-1010, Pacific Engineering and Analysis, El Cerrito, USA.

  • Sokolov, V. Y., Loh, C. H., Wen, K. L., et al. (2004). Evaluation of generalized site response functions for typical soil classes (B, C, and D) in Taiwan. Earthquake Spectra,20, 1279–1316.

    Article  Google Scholar 

  • Toro, G. R., Abrahamson, N., Schneider, J. F., et al. (1997). Model of strong ground motions from earthquakes in central and eastern North America: Best estimates and uncertainties. Seismological Research Letters,68, 41–57.

    Article  Google Scholar 

  • Tsai, C. C. P., & Chen, K. C. (2000). A model for the high-cut process of strong-motion accelerations in terms of distance, magnitude, and site condition: An example from the SMART 1 Array, Lotung, Taiwan. Bulletin of the Seismological Society of America,90(6), 1535–1542.

    Article  Google Scholar 

  • Tsai, Y. B., Yu, T. M., Chao, H. L., Lee, C. P., et al. (2001). Spatial distribution and age dependence of human-fatality rates from the Chi-Chi, Taiwan, Earthquake of 21 September 1999. Bulletin of the Seismological Society of America,91(5), 1298–1309.

    Article  Google Scholar 

  • Van Houtte, C., Drouet, S., Cotton, F., et al. (2011). Analysis of the origins of κ (kappa) to compute hard rock to rock adjustment factors for GMPEs. Bulletin of the Seismological Society of America,101(6), 2926–2941. https://doi.org/10.1785/0120100345.

    Article  Google Scholar 

  • Van Houtte, C., Ktenidou, O. J., Larkin, T., Holden, C., et al. (2014). Hard-site κ 0 (kappa) calculations for Christchurch, New Zealand, and comparison with local ground motion prediction models. Bulletin of the Seismological Society of America,104(4), 1899–1913. https://doi.org/10.1785/0120130271.

    Article  Google Scholar 

  • Wang, Y. J., Ma, K. F., Mouthereau, F., Eberhart-Phillips, D., et al. (2010). Three dimensional Q P- and Q S- tomography beneath Taiwan Orogenic Belt: Implication for tectonic and thermal structure. Journal of Geophysical Research,180, 891–910. https://doi.org/10.1111/j.1365-246X.2009.04459.x.

    Article  Google Scholar 

  • Wen, K. L., Chang, Y. W., Lin, C. M., Chiang, H. J., Huang, M. W., et al. (2008). Damage and ground motion of the 26 December 2006 Pingtung earthquakes, Taiwan. Terrestrial, Atmospheric & Oceanic Sciences,19(6), 641–651. https://doi.org/10.3319/TAO.2008.19.6.000(PT).

    Article  Google Scholar 

  • Zandieh, A., Campbell, K. W., Pezeshk, S., et al. (2016). Estimation of κ 0 implied by the high-frequency shape of the NGA-West2 ground motion prediction equations. Bulletin of the Seismological Society of America.,106(3), 1342–1356. https://doi.org/10.1785/0120150356.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Central Weather Bureau and the National Center for Research on Earthquake Engineering for providing the strong motion data. This work was funded by the Ministry of Science and Technology (MOST103-2625-M-008-017-MY3, MOST105-2116-M-008-012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Liang Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, SC., Wen, KL., Huang, MW. et al. The High-Frequency Decay Parameter (Kappa) in Taiwan. Pure Appl. Geophys. 176, 4861–4879 (2019). https://doi.org/10.1007/s00024-019-02219-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02219-y

Keywords

Navigation