Skip to main content
Log in

Experimental Study on Mechanical Properties, Acoustic Emission Energies and Failure Modes of Pre-cracked Rock Materials under Uniaxial Compression

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

To better understand the basic properties and phenomena of compression failure in rock mass structures, a series of uniaxial compression tests on sandstone specimens was carried out using loading equipment, an acoustic emission system, a computed tomography scanning system and a high-speed video camera. The results showed that the fracture process of sandstone samples was divided into three stages: original micro-crack closure, micro-crack nucleation and macro-crack propagation. Avalanche energies of the intact and single-fissured specimens followed a power-law distribution, which revealed avalanche criticality. The optimal exponents (\(r\)) of single-fissured specimens were about 1.64 and were slightly lower than that of the intact specimen. The fitted power-law exponents (\(r^{\prime}\)) of sandstone specimens change in the different stages of experiments and gradually tend to a stable value, which acted as a “warning signal” for the impending major collapse. Based on histogram analysis and the maximum likelihood method, the presence of a flaw may affect the statistical properties of avalanche energies. The flaw inclination angle had little influence on the optimal exponent, but it had certain influence on the fracture modes of the specimens. This paper may provide a new theoretical basis for predicting the collapse failure of engineering rock mass structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bobet, A. (2000). The initiation of secondary cracks in compression. Engineering Fracture Mechanics, 66(2), 187–219.

    Article  Google Scholar 

  • Bobet, A., & Einstein, H. H. (1998). Fracture coalescence in rock-type materials under uniaxial and biaxial compression. International Journal of Rock Mechanics and Mining Sciences, 35(7), 863–888.

    Article  Google Scholar 

  • Castillo-Villa, P. O., Baro, J., Planes, A., Salje, E. K. H., Sellappan, P., Kriven, W. M., et al. (2013). Crackling noise during failure of alumina under compression: The effect of porosity. Journal of Physics-Condensed Matter, 25(29), 9.

    Article  Google Scholar 

  • Chen, C. S., Pan, E., & Amadei, B. (1998). Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method. International Journal of Rock Mechanics and Mining Sciences, 35(2), 195–218.

    Article  Google Scholar 

  • Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. Siam Review, 51(4), 661–703.

    Article  Google Scholar 

  • Eberhardt, E., Stead, D., Stimpson, B., & Read, R. S. (1998). Identifying crack initiation and propagation thresholds in brittle rock. Canadian Geotechnical Journal, 35(2), 222–233.

    Article  Google Scholar 

  • Erarslan, N., & Williams, D. J. (2013). Mixed-mode fracturing of rocks under static and cyclic loading. Rock Mechanics and Rock Engineering, 46(5), 1035–1052.

    Article  Google Scholar 

  • Huang, Y. H., Yang, S. Q., Ranjith, P. G., & Zhao, J. (2017a). Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes: Experimental study and particle flow modeling. Computers and Geotechnics, 88, 182–198.

    Article  Google Scholar 

  • Huang, Y. H., Yang, S. Q., Tian, W. L., Zhao, J., Ma, D., & Zhang, C. S. (2017b). Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment. Archives of Civil and Mechanical Engineering, 17(4), 912–925.

    Article  Google Scholar 

  • Jiang, X., Jiang, D. Y., Chen, J., & Salje, E. K. H. (2016). Collapsing minerals: Crackling noise of sandstone and coal, and the predictability of mining accidents. American Mineralogist, 101(12), 2751–2758.

    Article  Google Scholar 

  • Lee, H., & Jeon, S. (2011). An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. International Journal of Solids and Structures, 48(6), 979–999.

    Article  Google Scholar 

  • Li, Y. P., Chen, L. Z., & Wang, Y. H. (2005). Experimental research on pre-cracked marble under compression. International Journal of Solids and Structures, 42(9–10), 2505–2516.

    Article  Google Scholar 

  • Li, Y. H., Peng, J. Y., Zhang, F. P., & Qiu, Z. G. (2016). Cracking behavior and mechanism of sandstone containing a pre-cut hole under combined static and dynamic loading. Engineering Geology, 213, 64–73.

    Article  Google Scholar 

  • Li, H. Q., & Wong, L. N. Y. (2012). Influence of flaw inclination angle and loading condition on crack initiation and propagation. International Journal of Solids and Structures, 49(18), 2482–2499.

    Article  Google Scholar 

  • Liu, J. P., Li, Y. H., Xu, S. D., Xu, S. A., & Jin, C. Y. (2015a). Cracking mechanisms in granite rocks subjected to uniaxial compression by moment tensor analysis of acoustic emission. Theoretical and Applied Fracture Mechanics, 75, 151–159.

    Article  Google Scholar 

  • Liu, T., Lin, B. Q., Zheng, C. S., Zou, Q. L., Zhu, C. J., & Yan, F. Z. (2015b). Influence of coupled effect among flaw parameters on strength characteristic of precracked specimen: Application of response surface methodology and fractal method. Journal of Natural Gas Science and Engineering, 26, 857–866.

    Article  Google Scholar 

  • Ma, G. W., Dong, Q. Q., Fan, L. F., & Gao, J. W. (2018). An investigation of non-straight fissures cracking under uniaxial compression. Engineering Fracture Mechanics, 191, 300–310.

    Article  Google Scholar 

  • Nataf, G. F., Castillo-Villa, P. O., Baro, J., Illa, X., Vives, E., Planes, A., et al. (2014). Avalanches in compressed porous SiO2-based materials. Physical Review E, 90(2), 9.

    Google Scholar 

  • Pappalardo, G., Mineo, S., Zampelli, S. P., Cubito, A., & Calcaterra, D. (2016). InfraRed Thermography proposed for the estimation of the Cooling Rate Index in the remote survey of rock masses. International Journal of Rock Mechanics and Mining Sciences, 83, 182–196.

    Article  Google Scholar 

  • Park, C. H., & Bobet, A. (2009). Crack coalescence in specimens with open and closed flaws: A comparison. International Journal of Rock Mechanics and Mining Sciences, 46(5), 819–829.

    Article  Google Scholar 

  • Park, C. H., & Bobet, A. (2010). Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Engineering Fracture Mechanics, 77(14), 2727–2748.

    Article  Google Scholar 

  • Rao, M., & Kusunose, K. (1995). Failure zone development in andesite as observed from acoustic emission locations and velocity changes. Physics of the Earth and Planetary Interiors, 88(2), 131–143.

    Article  Google Scholar 

  • Sagong, M., & Bobet, A. (2002). Coalescence of multiple flaws in a rock-model material in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 39(2), 229–241.

    Article  Google Scholar 

  • Salje, E. K. H., Lampronti, G. I., Soto-Parra, D. E., Baro, J., Planes, A., & Vives, E. (2013). Noise of collapsing minerals: Predictability of the compressional failure in goethite mines. American Mineralogist, 98(4), 609–615.

    Article  Google Scholar 

  • Salje, E. K. H., Liu, H. L., Jin, L. S., Jiang, D. Y., Xiao, Y., & Jiang, X. (2018). Intermittent flow under constant forcing: Acoustic emission from creep avalanches. Applied Physics Letters, 112(5), 5.

    Article  Google Scholar 

  • Salje, E. K. H., Soto-Parra, D. E., Planes, A., Vives, E., Reinecker, M., & Schranz, W. (2011). Failure mechanism in porous materials under compression: crackling noise in mesoporous SiO2. Philosophical Magazine Letters, 91(8), 554–560.

    Article  Google Scholar 

  • Sethna, J. P., Dahmen, K. A., & Myers, C. R. (2001). Crackling noise. Nature, 410(6825), 242–250.

    Article  Google Scholar 

  • Vasarhelyi, B., & Bobet, A. (2000). Modeling of crack initiation, propagation and coalescence in uniaxial compression. Rock Mechanics and Rock Engineering, 33(2), 119–139.

    Article  Google Scholar 

  • Wang, H. J., Liu, D., Cui, Z. D., Cheng, C., & Jian, Z. (2016). Investigation of the fracture modes of red sandstone using XFEM and acoustic emissions. Theoretical and Applied Fracture Mechanics, 85, 283–293.

    Article  Google Scholar 

  • Wang, Z. L., Ning, J. G., & Ren, H. L. (2018a). Frequency characteristics of the released stress wave by propagating cracks in brittle materials. Theoretical and Applied Fracture Mechanics, 96, 72–82.

    Article  Google Scholar 

  • Wang, Y. L., Tang, J. X., Dai, Z. Y., & Yi, T. (2018b). Experimental study on mechanical properties and failure modes of low-strength rock samples containing different fissures under uniaxial compression. Engineering Fracture Mechanics, 197, 1–20.

    Article  Google Scholar 

  • Wu, Z. J., & Wong, L. N. Y. (2013). Modeling cracking behavior of rock mass containing inclusions using the enriched numerical manifold method. Engineering Geology, 162, 1–13.

    Article  Google Scholar 

  • Yang, S. Q., Huang, Y. H., & Ranjith, P. G. (2018). Failure mechanical and acoustic behavior of brine saturated-sandstone containing two pre-existing flaws under different confining pressures. Engineering Fracture Mechanics, 193, 108–121.

    Article  Google Scholar 

  • Yang, S. Q., Huang, Y. H., Tian, W. L., & Zhu, J. B. (2017). An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression (vol 35, pg 217, 2017). Engineering Geology, 226, 326–327.

    Article  Google Scholar 

  • Yin, P., Wong, R. H. C., & Chau, K. T. (2014). Coalescence of two parallel pre-existing surface cracks in granite. International Journal of Rock Mechanics and Mining Sciences, 68, 66–84.

    Article  Google Scholar 

  • Zhang, X. W., Lu, Y. Y., Tang, J. R., Zhou, Z., & Liao, Y. (2017). Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel, 190, 370–378.

    Article  Google Scholar 

  • Zhou, Z. L., Cai, X., Ma, D., Cao, W. Z., Chen, L., & Zhou, J. (2018). Effects of water content on fracture and mechanical behavior of sandstone with a low clay mineral content. Engineering Fracture Mechanics, 193, 47–65.

    Article  Google Scholar 

  • Zhuang, X. Y., Chun, J. W., & Zhu, H. H. (2014). A comparative study on unfilled and filled crack propagation for rock-like brittle material. Theoretical and Applied Fracture Mechanics, 72, 110–120.

    Article  Google Scholar 

Download references

Acknowledgements

This study is funded by the National Science and Technology Major Project of China (2016ZX05045-004) and the Fundamental Research Funds for the Central Universities (no. 2018CDYJSY0055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongming Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, D., Bai, X. et al. Experimental Study on Mechanical Properties, Acoustic Emission Energies and Failure Modes of Pre-cracked Rock Materials under Uniaxial Compression. Pure Appl. Geophys. 176, 4519–4532 (2019). https://doi.org/10.1007/s00024-019-02201-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02201-8

Keywords

Navigation