Skip to main content
Log in

Comparison of Early Aftershock Forecasting for the 2008 Wenchuan MS8.0 Earthquake

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The MS8.0 earthquake that occurred in Wenchuan, Sichuan in 2008 provides an important case for the study of operational earthquake forecasting and short-term aftershock forecasting of major disaster-inducing earthquakes in China. This paper focuses on the comparative study of the applicability of the epidemic-type aftershock sequence (ETAS) model, the Reasenberg–Jones (R–J) model and the Omi–R–J model, which are widely adopted internationally for short-term aftershock forecasting and seismic hazard mitigation strategy research. We compare the stability of model parameters and aftershock occurrence rate forecasting, and evaluate the effectiveness of forecasting using the N-test and T-test with multiple time windows. The results show that the sequence parameters of the ETAS model, the R–J model and the Omi–R–J model tend to stabilize after 15.50, 15.50 and 6.00 days following the earthquake respectively, and the attenuation of the Wenchuan MS8.0 earthquake is rather normal. Compared to the ETAS model and the R–J model, the Omi–R–J model obtain steadier model parameters in a shorter time with significantly smaller parameters pORJ, cORJ, bORJ and standard deviations. Among the three models, the overall aftershock occurrence rate forecasted by the R–J model is the highest, followed by the Omi–R–J model, while that of the ETAS model is the lowest. N-test results show overall forecasting effectiveness of 93.8, 80.7 and 97.7% for the ETAS, R–J and Omi–R–J models, respectively, with the ETAS and Omi–R–J models superior to the R–J model, and the Omi–R–J model slightly better than the ETAS model. The overall “information gain per earthquake” calculation results show that the ETAS model is superior to the Omi–R–J and R–J models, while the Omi–R–J model is better than the R–J model; thus the combined use of the ETAS and Omi–R–J models by focusing on their respective strengths might ensure optimal performance. These “maneuverable” forecasting approaches to short-term aftershock model forecasting will play a vital role in efficient post-disaster relief, emergency management decision-making and post-disaster reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://baike.baidu.com/item/5.12Wenchuanearthquake/11042644?fromtitle=Wenchuanearthquake&fromid=2452700&fr=aladdin.

  2.  <Wenchuan MS8.0 earthquake Scientific Research Report> Compiling group, 2009. Wenchuan MS8.0 earthquake scientific research report, Beijing: Seismological Press.

  3. National Earthquake Cataloging System, http://10.5.202.22/bianmu/index.jsp, accessed June 22, 2018.

References

  • Bi, J. M., & Jiang, C. S. (2017). Evaluation on the forecasting effectiveness of short-term aftershock occurrence rate and forecasting strategies at the junction of Shanxi, Hebei and Inner Mongolia. Progress in Geophysics (in Chinese),32, 8–17. https://doi.org/10.6038/pg20170102.

    Article  Google Scholar 

  • Console, R., Jackson, D. D., & Kagan, Y. Y. (2010). Using the ETAS model for catalog declustering and seismic background assessment. Pure and Applied Geophysics,167, 819–830.

    Article  Google Scholar 

  • Gerstenberger, M. C., Wiemer, S., Jones, L. M., & Reasenberg, P. A. (2005). Real-time forecasts of tomorrow’s earthquakes in California. Nature,435, 328–331.

    Article  Google Scholar 

  • Guo, X. Y., Chen, X. Z., & Li, Y. E. (2010). Focal mechanism solutions for the 2008 MS8.0 Wenchuan earthquake and part of its aftershocks. Earthquake (in Chinese),30, 50–60.

    Google Scholar 

  • Guo, Z., & Ogata, Y. (1997). Statistical relations between the parameters of aftershocks in time, space, and magnitude. Journal of Geophysical Research,102, 2857–2873.

    Article  Google Scholar 

  • Guo, Y. C., Zhuang, J. C., & Zhou, S. Y. (2015). An improved space-time ETAS model for inverting the rupture geometry from seismicity triggering. Journal of Geophysical Research,120, 3309–3323. https://doi.org/10.1002/2015JB011979.

    Article  Google Scholar 

  • Gutenberg, R., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America,34, 185–188.

    Google Scholar 

  • Helmstetter, A., Kagan, Y. Y., & Jackson, D. D. (2006). Comparison of short-term and long-term earthquake forecast models for southern California. Bulletin of the Seismological Society of America,96, 90–106.

    Article  Google Scholar 

  • Huang, Q. (2006). Search for reliable precursors: A case study of the seismic quiescence of the 2000 western Tottori prefecture earthquake. Journal of Geophysical Research,111, B04301. https://doi.org/10.1029/2005JB003982.

    Article  Google Scholar 

  • Imoto, M. (2007). Information gain of a model based on multidisciplinary observations with correlations. Journal of Geophysical Research,112, B05306. https://doi.org/10.1029/2006JB004662.

    Article  Google Scholar 

  • Jia, K., Zhou, S. Y., Zhuang, J. C., & Jiang, C. S. (2014). Possibility of the independence between the 2013 Lushan earthquake and the 2008 Wenchuan earthquake on LongmenShan Fault, Sichuan, China. Seismological Research Letters,85, 60–67. https://doi.org/10.1785/0220130115.

    Article  Google Scholar 

  • Jia, K., Zhou, S. Y., Zhuang, J. C., Jiang, C. S., Guo, Y. C., Gao, Z. H., et al. (2018). Did the 2008 MW 7.9 Wenchuan earthquake trigger the occurrence of the 2017 MW 6.5 Jiuzhaigou earthquake in Sichuan, China? Journal of Geophysical Research Solid Earth,123, 2965–2983. https://doi.org/10.1002/2017JB015165.

    Article  Google Scholar 

  • Jiang, C. S., Bi, J. M., Wang, F. C., Kui, Y. G., & Long, F. (2018). Application of the Omi–R–J method for forecast of early aftershocks to the 2017 Jiuzhaigou, Sichuan, MS7.0 earthquake. Chinese Journal of Geophysics (in Chinses),61, 2099–2110. https://doi.org/10.6038/cjg2018M0113.

    Article  Google Scholar 

  • Jiang, C. S., & Wu, Z. L. (2011). Intermediate-term medium-range Accelerating Moment Release (AMR) priori to the 2010 Yushu MS7.1 earthquake. Chinese Journal of Geophysics (in Chinses),54, 1501–1510.

    Google Scholar 

  • Jiang, C. S., Wu, Z. L., Yin, F. L., Guo, L. J., Bi, J. M., & Wang, Y. W. (2015). Stability of early estimation sequence parameters for continuous forecast of the aftershock rate: A case study of the 2014 Ludian, Yunnan MS6.5 earthquake. Chinese Journal of Geophysics (in Chinses).,58, 4163–4173.

    Google Scholar 

  • Jiang, H. K., Zheng, J. C., Wu, Q., Qu, Y. J., & Li, Y. L. (2007). Earlier statistical features of ETAS model parameters and their seismological meanings. Chinese Journal of Geophysics (in Chinses),50, 1778–1786.

    Google Scholar 

  • Jiang, C. S., Zhuang, J. C., Wu, Z. L., & Bi, J. M. (2017). Application and comparison of two short-term probabilistic forecasting models for the 2017 Jiuzhaigou, Sichuan, MS7.0 earthquake. Chinese Journal of Geophysics (in Chinses),60, 4132–4144. https://doi.org/10.6038/cjg20171038.

    Article  Google Scholar 

  • Kagan, Y. Y., & Jackson, D. D. (1995). New seismic gap hypothesis: Five years after. Journal of Geophysical Research,100, 3934–3959.

    Google Scholar 

  • Lewis, P. A. W., & Shedler, G. S. (1979). Simulation of nonhomogeneous Poisson processes by thinning. Naval Research Logistics Quarterly,26, 403–413.

    Article  Google Scholar 

  • Marzocchi, W., & Lombardi, A. M. (2009). Real-time forecasting following a damaging earthquake. Seismological Research Letters,36, L21302. https://doi.org/10.1029/2009GL040233.

    Article  Google Scholar 

  • Nanjo, K. Z., Tsuruoka, H., Yokoi, S., Ogata, Y., Falcone, G., Hirata, N., et al. (2012). Predictability study on the aftershock sequence following the 2011 off the Pacific coast of Tohoku, Japan, earthquake: First results. Geophysical Journal International,191, 635–658. https://doi.org/10.1111/j.1365-246x.2012.05626.x.

    Article  Google Scholar 

  • Ogata, Y. (1983). Estimation of parameters in the modified Omori formula for aftershock frequencies by the maximum likelihood procedure. Journal of Physics of the Earth,31, 115–124.

    Article  Google Scholar 

  • Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association,83, 9–27.

    Article  Google Scholar 

  • Ogata, Y. (1989). Statistical model for standard seismicity and detection of anomalies by residual analysis. Tectonophysics,169, 159–174.

    Article  Google Scholar 

  • Ogata, Y. (1992). Detection of precursory relative quiescence before great earthquakes through a statistical model. Journal of Geophysical Research,97, 19845–19871.

    Article  Google Scholar 

  • Ogata, Y. (2001). Increased probability of large earthquakes near aftershock regions with relative quiescence. Journal of Geophysical Research,106, 8729–8744.

    Article  Google Scholar 

  • Ogata, Y., & Katsura, K. (1993). Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues. Geophysical Research Letters,113, 727–738.

    Google Scholar 

  • Ogata, Y., & Katsura, K. (2006). Immediate and updated forecasting of aftershock hazard. Geophysical Research Letters,33, L10305.

    Article  Google Scholar 

  • Ogata, Y., Katsura, K., Falcone, G., Nanjo, K. Z., & Zhuang, J. C. (2013). Comprehensive and topical evaluations of earthquake forecasts in terms of number, time, space, and magnitude. Bulletin of the Seismological Society of America,103, 1692–1708. https://doi.org/10.1785/0120120063.

    Article  Google Scholar 

  • Omi, T., Ogata, Y., Hirata, Y., & Aihara, K. (2013). Forecasting large aftershocks within one day after the mainshock. Scientific Reports,3, 2218. https://doi.org/10.1038/srep02218.

    Article  Google Scholar 

  • Omi, T., Ogata, Y., Hirata, Y., & Aihara, K. (2015). Intermediate-term forecasting of aftershocks from an early aftershock sequence: Bayesian and ensemble forecasting approaches. Journal of Geophysical Research,120, 2561–2578. https://doi.org/10.1002/2014JB011456.

    Article  Google Scholar 

  • Omi, T., Ogata, Y., Shiomi, K., Enescu, B., Sawazaki, K., & Aihara, K. (2016). Automatic aftershock forecasting: A test using real-time seismicity data in Japan. Bulletin of the Seismological Society of America,106, 2450–2458. https://doi.org/10.1785/0120160100.

    Article  Google Scholar 

  • Omori, F. (1894). On aftershocks of earthquakes. Journal of the College of Science. Imperial University of Tokyo,7, 11–200.

    Google Scholar 

  • Peng, Z. G., Vidale, J., & Houston, H. (2006). Anomalous early aftershock decay rate of the 2004 MW6.0 Parkfield, California, earthquake. Geophysical Research Letters,33, L17307. https://doi.org/10.1029/2006gl026744.

    Article  Google Scholar 

  • Reasenberg, P. A., & Jones, L. M. (1989). Earthquake hazard after a mainshock in California. Science,243, 1173–1176.

    Article  Google Scholar 

  • Rhoades, D. A., & Gerstenberger, M. C. (2009). Mixture models for improved short-term earthquake forecasting. Bulletin of the Seismological Society of America,99, 636–646.

    Article  Google Scholar 

  • Rhoades, D. A., Schorlemmer, D., Gerstenberger, M. C., Christophersen, A., Zechar, J. D., & Imoto, M. (2011). Efficient testing of earthquake forecasting models. Acta Geophysica,59, 728–747.

    Article  Google Scholar 

  • Schorlemmer, D., Gerstenberger, M. C., Wiemer, S., Jackson, D. D., & Rhoades, D. A. (2007). Earthquake likelihood model testing. Seismological Research Letters,78, 17–29.

    Article  Google Scholar 

  • Schorlemmer, D., Werner, M. J., Marzocchi, W., Jordan, T. H., Ogata, Y., Jackson, D. D., et al. (2018). The Collaboratory for the Study of Earthquake Predictability: Achievements and priorities. Seismological Research Letters,2018, 1–9.

    Google Scholar 

  • Shcherbakov, R., Zhuang, L., & Ogata, Y. (2017). Constraining the magnitude of the largest event in a foreshock–main shock–aftershock sequence. Geophysical Journal International,212, 1–13.

    Article  Google Scholar 

  • Shi, Y., & Bolt, B. A. (1982). The standard error of the magnitude frequency b-value. Bulletin of the Seismological Society of America,72, 1677–1687.

    Google Scholar 

  • Taroni, M., Marzocchi, W., Schorlemmer, D., Werner, M. J., & Wiemer, S. (2018). Prospective CSEP evaluation of 1-day, 3-month, and 5-year earthquake forecasts for Italy. Seismological Research Letters,89, 1251–1261. https://doi.org/10.1785/0220180031.

    Article  Google Scholar 

  • Utsu, T. (1961). A statistical study of on the occurrence of aftershocks. Geophysical Magazine,30, 521–605.

    Google Scholar 

  • Utsu, T., Ogata, Y., & Matsuura, R. S. (1995). The Centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth,43, 1–33.

    Article  Google Scholar 

  • Wang, W. M., Zhao, L. F., Li, J., & Yao, Z. X. (2008). Rupture process of the MS8.0 Wenchuan earthquake of Sichuan, China. Chinese Journal of Geophysics (in Chinses),51, 1403–1410.

    Google Scholar 

  • Woessner, J., Hainzl, S., Marzocchi, W., Werner, M. J., & Lombardi, A. M. (2011). A retrospective comparative forecast test on the 1992 Landers sequence. Journal of Geophysical Research,116, B05305. https://doi.org/10.1029/2010JB007846.

    Article  Google Scholar 

  • Zechar, J. D. (2010). Evaluating earthquake predictions and earthquake forecasts: A guide for students and new researchers. Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-77337879. http://www.corssa.org. Accessed 10 Apr 2018.

  • Zhang, Y., Feng, W. P., Xu, L. S., Zhou, C. H., & Chen, Y. T. (2008). Spatio-temporal rupture process of the 2008 Wenchuan earthquake. Science in China (Series D),38, 1186–1194.

    Google Scholar 

  • Zhao, B., Shi, Y. T., & Gao, Y. (2011). Relocation of the Wenchuan MS8.0 earthquake sequence. Earthquake (in Chinses),31, 1–10.

    Google Scholar 

  • Zhuang, J. C. (2011). Next-day earthquake forecasts for the Japan region generated by the ETAS model. Earth Planets Space,63, 207–216. https://doi.org/10.5047/eps.2010.12.010.

    Article  Google Scholar 

  • Zhuang, J. C., Harte, D., Werner, M. J., Hainzl, S., & Zhou, S. Y. (2012). Basic models of seismicity: Temporal models. Community Online Resource for Statistical Seismicity Analysis. https://doi.org/10.5078/corssa-79905851.http://www.corssa.org. Accessed 10 Apr 2018.

  • Zhuang, J. C., Ogata, Y., & Wang, T. (2017). Data completeness of the Kumamoto earthquake sequence in the JMA catalog and its influence on the estimation of the ETAS parameters. Earth Planets and Space,69, 36. https://doi.org/10.1186/s40623-017-0614-6.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the 2018 Earthquake Regime Tracking Work of CEA (2018010101) and the international partnership program of Chinese Academy of Sciences (Grant no. 131551KYSB20160002). The preparatory group of the China Laboratory Center for the International Collaboratory for the Study of Earthquake Predictability (CSEP) plan provided guidance for this study. The study used the National Unified Official Catalogue provided by the China Earthquake Networks Center. We thank the guest editor of the present special issue, Prof. Zhongliang Wu, for the invitation. We also express our gratitude to Prof. Zhuang Jiancang of the Institute of Statistics and Mathematics (ISM) and Dr. Takahiro Omi of the Institute of Production Technology, Tokyo University, Japan, for their procedural and technical support. Additionally, we also thank to anonymous reviewers, whose comments and editing helped to greatly improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, J., Jiang, C. Comparison of Early Aftershock Forecasting for the 2008 Wenchuan MS8.0 Earthquake. Pure Appl. Geophys. 177, 9–25 (2020). https://doi.org/10.1007/s00024-019-02192-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02192-6

Keywords

Navigation