Skip to main content
Log in

Global Atmospheric Oscillation: An Integrity of ENSO and Extratropical Teleconnections

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Many researchers have recognized the long distance teleconnections between El Niño–Southern Oscillation (ENSO) events and some other processes in the global climate system happening in areas often very far from the equatorial zone of the Pacific Ocean. In this paper we investigate similar links between ENSO and extratropical processes taken in their whole set. For this goal we compute differences between the sea-level pressure and the near-surface air (sea surface) temperature global fields which correspond to either El Niño or La Niña events observed since the end of the XIX century and up to the beginning of the XXI century. As a result, we establish that an integrity exists of ENSO and the extratropical teleconnections such as North Atlantic Oscillation (NAO), Arctic Oscillation (AO), the Northern Hemisphere annular (NHA) mode as well as the Pacific–North American (PNA) pattern, and their analogs in the Southern Hemisphere in the interannual timescale. Named this integrity the Global Atmospheric Oscillation (GAO), we define two representative indices of GAO, and investigate the temporal dynamics of these indices. This investigation reveals that GAO’s extratropical components may be real irrespective of ENSO while the latter accompanies GAO in all cases. Moreover, in view of a general eastward propagation of the GAO as a spatial structure, some its extratropical components show changes of their features prior the El Niño (La Niña) begins to form. Using these features as fingerprints of the forthcoming evolution of ENSO, we define another GAO index for the El Niño prediction with the lead-time of about 1 year. At last, we establish that some of the CMIP5-models reproduce GAO reasonably well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allan, R. J., & Ansell, T. J. (2006). A new globally-complete monthly historical gridded mean sea level pressure data set (HadSLP2): 1850–2004. Journal of Climate, 19, 5816–5846.

    Article  Google Scholar 

  • Ayers, J. M., & Strutton, P. G. (2013). Nutrient variability in subantarctic mode waters forced by the southern annular mode and ENSO. Geophysical Research Letters, 40, 3419–3423.

    Article  Google Scholar 

  • Bailey, J. S. (1998). Temperature anomalies in high northerly latitudes and their link with the El Niño/Southern oscillation. Annales of Geophysicae, 16(7), 1523–1526.

    Article  Google Scholar 

  • Berlage, H.P. (1957). Schommelingen van de algemene luchtcirculatie met perioden van meer dan een jaar, hun aard en betekenis voor de weersverwachting op lange termijn, (fluctuations of the general atmospheric circulation of more than one year, their nature and prognostic value). Mededelingen en Verhandelingen, (vol. 69, p. 152) Koninklijk Nederlands Meteorologisch Instituut.

  • Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97(3), 163–172.

    Article  Google Scholar 

  • Blekhman, I. I. (1971). Synchronization of dynamical systems (p. 896). Moscow: Nauka.

    Google Scholar 

  • Boschat, G., Terray, P., & Masson, S. (2013). Extratropical forcing of ENSO. Geophysical Research Letters, 40, 1605–1611.

    Article  Google Scholar 

  • Brönnimann, S. (2007). Impact of El Niño-Southern oscillation on European climate. Reviews of Geophysics, 45(RG3003/2007), 1–28.

    Google Scholar 

  • Bryson, R. A., & Starr, T. B. (1975). Chandler tides in the atmosphere. Journal of Atmospheric Science, 34, 1975–1986.

    Article  Google Scholar 

  • Byshev, V. I., Neiman, V. G., Ponomarev, V. I., Romanov, Yu A, Serykh, I. V., & Tsurikova, T. V. (2014). The Influence of Global atmospheric oscillation on formation of climate anomalies in the Russian Far East. Doklady Earth Sciences, 458(1), 1116–1120.

    Article  Google Scholar 

  • Byshev, V. I., Neiman, V. G., Romanov, Yu A, & Serykh, I. V. (2012a). El Niño as a consequence of the global oscillation in the dynamics of the Earth’s climatic system. Doklady Earth Sciences, 446(1), 1089–1094.

    Article  Google Scholar 

  • Byshev, V. I., Neiman, V. G., Romanov, Y. A., & Serykh, I. V. (2012b). On El Niño’s impact upon the climate characteristics of the Indian monsoon. Oceanology, 52(2), 147–156.

    Article  Google Scholar 

  • Byshev, V. I., Neiman, V. G., Romanov, Yu A, Serykh, I. V., & Sonechkin, D. M. (2016). Statistical significance and climatic role of the Global Atmospheric Oscillation. Oceanology, 56(2), 165–171.

    Article  Google Scholar 

  • Chang, P., Fang, Y., Saravanan, R., et al. (2006). The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324–328.

    Article  Google Scholar 

  • Chen, X. Y., & Wallace, J. M. (2015). ENSO-like variability: 1900–2013. Journal of Climate, 28, 9623–9641. https://doi.org/10.1175/JCLI-D-15-0322.1.

    Article  Google Scholar 

  • Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., et al. (2011). The twentieth century reanalysis project. Quarterly Journal of Royal Meteorological. Society, 137, 1–28. https://doi.org/10.1002/qj.776.

    Article  Google Scholar 

  • De Viron, O., Dikcey, J. O., & Ghil, M. (2013). Global modes of climate variability. Geophysical Research Letters, 40, 1832–1837.

    Article  Google Scholar 

  • Diaz, H. F., Hoeling, M. P., & Eischeid, J. K. (2001). ENSO variability, teleconnections, and climate change. International Journal of Climatology, 21, 1845–1862.

    Article  Google Scholar 

  • Halpert, M. S., & Ropelewski, C. F. (1992). Surface–temperature patterns associated with the Southern Oscillation. Journal of Climate, 5(6), 577–593.

    Article  Google Scholar 

  • Ham, Y.-G., Kug, J.-S., & Park, J.-Y. (2013). Two distinct roles of Atlantic SSTs in ENSO variability: north tropical Atlantic SST and Atlantic Niño. Geophysical Research Letters, 40, 4012–4017.

    Article  Google Scholar 

  • Handoh, I. C., Bigg, G. R., Matthews, A. J., & Stevens, D. P. (2006). Interannual variability of the tropical Atlantic independent of and associated with ENSO: Part II. The south tropical Atlantic. International Journal of Climatology, 26, 1957–1976.

    Article  Google Scholar 

  • Hirahara, S., Ishii, M., & Fukuda, Y. (2014). Centennial-scale sea surface temperature analysis and its uncertainty. Journal of Climate, 27, 57–75.

    Article  Google Scholar 

  • Horel, J. D., & Wallace, J. M. (1981). Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather Review, 109, 813–829.

    Article  Google Scholar 

  • Huang, B., Banzon, V. F., Freeman, E., et al. (2015). Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. Journal of Climate, 28(3), 911–930.

    Article  Google Scholar 

  • Jevrejeva, S., Moore, J. C., & Grinsted, A. (2003). Influence of the Arctic oscillation and El-Niño–Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: the wavelet approach. Journal of Geophysical Research, 108, 4677. https://doi.org/10.1029/2003jD003417.

    Article  Google Scholar 

  • Jones, P. D. (1989). The influence of ENSO on global temperatures. Climate Monitor, 17, 80–89.

    Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin American Meteorological Society, 77, 437–471.

    Article  Google Scholar 

  • Keenlyside, N. S., Ding, H., & Latif, M. (2013). Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophysical Research Letters, 40, 2278–2283.

    Article  Google Scholar 

  • Kobayashi, S., Ota, Y., Harada, Y., et al. (2015). The JRA-55 reanalysis: General specifications and basic characteristics. Journal of Meteorological Society of Japan, 93(1), 5–48.

    Article  Google Scholar 

  • Koshlyakov, M. N., Romanov, Yu A, & Romanov, A. A. (1998). El Niño-southern oscillation and the iceberg distribution in the Pacific sector of the Antarctic. Oceanology, 38(4), 437–446.

    Google Scholar 

  • Lumpkin, R., & Johnson, G. C. (2013). Global ocean surface velocities from drifters: mean variance, El Niño–southern oscillation response, and seasonal cycle. Journal of Geophysical Research, 118(6), 2992–3006. https://doi.org/10.1002/jgrc.20210.

    Google Scholar 

  • McPhaden, M. J. (2002). El Niño and La Niña; causes and global consequences. Wiley encyclopedia of global environmental change (Vol. 1, pp. 353–370). Chichester: Wiley.

    Google Scholar 

  • Mo, K. C., & White, G. H. (1985). Teleconnections on the southern hemisphere. Monthly Weather Review, 113, 22–37.

    Article  Google Scholar 

  • Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 database. Journal of Geophysical Research, 117, D08101. https://doi.org/10.1029/2011JD017187.

    Article  Google Scholar 

  • Peng, J. B., Chen, L. T., & Zhang, Q. Y. (2014a). The relationship between the El Nino/La Nina cycle and the transition chains of four atmospheric oscillations. Part I: The four oscillations. Advance of Atmospheric Sciences, 31(2), 468–479.

    Article  Google Scholar 

  • Peng, J. B., Chen, L. T., & Zhang, Q. Y. (2014b). The relationship between the El Nino/La Nina cycle and the transition chains of four atmospheric oscillations. Part II: The relationship and a new approach to the prediction of El Nino. Advance of Atmospheric Sciences, 31(3), 637–646.

    Article  Google Scholar 

  • Peterson, R. G., & White, W. B. (1998). Slow teleconnections linking the Antarctic circumpolar wave with the tropical El Nino–Southern Oscillation. Journal of Geophysical Research, 103, 24573–24583.

    Article  Google Scholar 

  • Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization. A universal concept in nonlinear sciences (p. 496). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rayner, N. A., Parker, D. E., Horton, E. B., et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14), 4407.

    Article  Google Scholar 

  • Romanov, Yu A, Romanova, N. A., & Romanov, P. (2014). Changing effect of El Niño on Antarctic iceberg distribution: From canonical El Niño to El Niño Modoki. Journal of Geophysical Research, 119C(1), 595–614.

    Google Scholar 

  • Ropelewski, C. F., & Halpert, M. S. (1987). Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review, 115, 1606–1626.

    Article  Google Scholar 

  • Sardeshmukh, P. D., Compo, G. P., & Penland, C. (2000). Changes of probability associated with El Niño. Journal of Climate, 13, 4268–4286.

    Article  Google Scholar 

  • Servain, J., Picaut, J., & Merle, J. (1982). Evidence of remote forcing in the equatorial Atlantic ocean. Journal of Physical Oceanography, 12(5), 457–463.

    Article  Google Scholar 

  • Serykh, I. V., & Sonechkin, D. M. (2016). Confirmation of the oceanic pole tide influence on El Niño. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 13(2), 44–52.

    Article  Google Scholar 

  • Serykh, I. V., & Sonechkin, D. M. (2017). Manifestations of motions of the Earth’s pole in the El Niño–southern oscillation rhythms. Doklady Earth Sciences, 472(2), 256–259.

    Article  Google Scholar 

  • Serykh, I. V., & Sonechkin, D. M. (2019). Nonchaotic and globally synchronized short-term climatic variations and their origin. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-018-02761-0.

    Google Scholar 

  • Stickler, A., Brönnimann, S., Valente, M. A., et al. (2014). ERA-CLIM: historical surface and upper-air data for future reanalyses. Bulletin American Meteorological Society, 95(9), 1419–1430.

    Article  Google Scholar 

  • Sugihara, G., May, R., Ye, H., Hsieh, C.-H., Deyle, E., Fogarty, M., et al. (2012). Detecting causality in complex systems. Science, 338, 496–500.

    Article  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). Overview of CMIP5 and the experiment design. Bulletin American Meteorological Society, 93, 485–498.

    Article  Google Scholar 

  • Thompson, D. W. J., & Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: month-to-month variability. Journal of Climate, 13, 1000–1016.

    Article  Google Scholar 

  • Trenberth, K., & Caron, J. M. (2000). The Southern Oscillation revisited: sea level pressures, surface temperatures, and precipitation. Journal of Climate, 13, 4358–4365.

    Article  Google Scholar 

  • Trenberth, K., & Shea, D. J. (1987). On the evolution of the Southern Oscillation. Monthly Weather Review, 115, 3078–3096.

    Article  Google Scholar 

  • van Loon, H., & Shea, D. J. (1987). The southern oscillation. Part IV: Anomalies of sea level pressure on the southern hemisphere and on Pacific sea surface temperature during development of a warm event. Monthly Weather Review, 115(2), 370–379.

    Article  Google Scholar 

  • Walker, G. T., & Bliss, E. W. (1932). World weather V. Memory Royal Meteorological. Society, 4(36), 53–84.

    Google Scholar 

  • Walker, G. T., & Bliss, E. W. (1937). World weather VI. Memory Royal Meteorological. Society, 4(39), 119–139.

    Google Scholar 

  • Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 109, 784–812.

    Article  Google Scholar 

  • Webster, P. J., & Yang, S. (1992). Monsoon and ENSO: Selectively interactive systems. Quarterly Journal of the Royal Meteorological Society, 118, 877–925.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant no. 14-50-00095), the Ministry of Science and Higher Education of the Russian Federation (Grant no. 0149-2018-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Serykh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3920 kb)

Supplementary material 2 (AVI 9518 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serykh, I.V., Sonechkin, D.M., Byshev, V.I. et al. Global Atmospheric Oscillation: An Integrity of ENSO and Extratropical Teleconnections. Pure Appl. Geophys. 176, 3737–3755 (2019). https://doi.org/10.1007/s00024-019-02182-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02182-8

Keywords

Navigation