Skip to main content
Log in

S-Wave Velocity Images of the Crust in the Southeast Margin of Tibet Revealed by Receiver Functions

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The southeast margin of Tibet is the region in clockwise rotation around the Eastern Himalayan Syntaxis due to the India–Eurasia collision and the resistance of the stable Sichuan Basin and South China block. However, the dynamic processes involved in the evolution and deformation of the region remain poorly understood due to a lack of reliable geophysical observations. We collected abundant seismic data recorded by 108 permanent broadband stations deployed in the SE margin of Tibet since 2000, and obtained 4536 pairs of P-wave receiver functions (PRFs) with high signal-to-noise ratio. In this study, we have implemented a novel two-step data inversion procedure that can reduce the dependence of the inversion results on the initial model. We first use low-frequency PRFs obtained by iterative deconvolution in the time domain, and then an initial model consisting of a series of 2-km-thick isotropic layers to fit velocity models, and thus determine an overall statistical solution by means of the bootstrap resampling technique. This statistical solution is then regarded as a new initial model to adjust high-frequency PRFs. Hence, the same resampling process is executed again to estimate the optimal S-wave velocity structure below each station. The results provide an accurate 3D image of the crust and uppermost mantle in the SE margin of Tibet. We infer a wide intra-crustal low-velocity zone that varies laterally and in depth, which is thinner or even absent in the most southern part of Yunnan. Our hypothesis is that this low-velocity zone is the result of the accumulation of lower crustal flow coming from central Tibet. Furthermore, we show that this lower crustal flow extends largely through the Sichuan–Yunnan diamond-shaped block, and that there are significant variations in both crustal velocity structure and deformation mechanism across the great strike-slip faults of the Jinshajiang–Red River and Xiaojiang fault systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bulletin of the Seismological Society of America, 81(6), 2504–2510.

    Google Scholar 

  • Ammon, C. J., Randall, G. E., & Zandt, G. (1990). On the non-uniqueness of receiver function inversions. Journal of Geophysical Research: Solid Earth, 95(B10), 15303–15318.

    Google Scholar 

  • Armijo, R., Tapponnier, P., Mercier, J. L., & Han, T. L. (1986). Quaternary extension in southern Tibet: Field observations and tectonic implications. Journal of Geophysical Research: Solid Earth, 91(B14), 13803–13872.

    Google Scholar 

  • Bai, D., Unsworth, M., Meju, M., Ma, X., Teng, J., Kong, X., et al. (2010). Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5), 358–362.

    Google Scholar 

  • Bao, X., Sun, X., Xu, M., Eaton, D. W., Song, X., Wang, L., et al. (2015). Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth and Planetary Science Letters, 415, 16–24.

    Google Scholar 

  • Berteussen, K. A. (1977). Moho depth determinations based on spectral ratio analysis of NORSAR long-period P-waves. Physics of the Earth and Planetary Interiors, 15(1), 13–27.

    Google Scholar 

  • Bird, P. (1991). Lateral extrusion of lower crust from under high topography, in the isostatic limit. Journal of Geophysical Research: Solid Earth, 96(B6), 10275–10286.

    Google Scholar 

  • Brace, W. F., & Kohlstedt, D. L. (1980). Limits on lithospheric stress imposed by laboratory experiments. Journal of Geophysical Research: Solid Earth, 85(B11), 6248–6252.

    Google Scholar 

  • Burchfiel, B. C., Chen, Z., Liu, Y., & Royden, L. H. (1995). Tectonics of the Longmen Shan and adjacent regions, Central China. International Geology Review, 37(8), 661–735.

    Google Scholar 

  • Burchfiel, B. C., Royden, L. H., van der Hilst, R. D., Hager, B. H., Chen, Z., King, R. W., et al. (2008). A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China. GSA Today, 18(7), 4–11.

    Google Scholar 

  • Cassidy, J. (1992). Numerical experiments in broadband receiver functions analysis. Bulletin of the Seismological Society of America, 82(3), 1453–1474.

    Google Scholar 

  • Chen, M., Huang, H., Yao, H., van der Hilst, R., & Niu, F. (2014). Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise adjoint tomography. Geophysical Research Letters, 41(2), 334–340.

    Google Scholar 

  • Clark, M. K., & Royden, L. H. (2000). Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8), 703–706.

    Google Scholar 

  • Copley, A. (2008). Kinematics and dynamics of the southeast margin of the Tibetan Plateau. Geophysical Journal International, 174(3), 1081–1100.

    Google Scholar 

  • Copley, A., & McKenzie, D. (2007). Model of crustal flow in the India–Asia collision zone. Geophysical Journal International, 169(2), 683–698.

    Google Scholar 

  • Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (Cambridge series in statistical and probabilistic mathematics). Cambridge: Cambridge University Press.

    Google Scholar 

  • Efron, B., & Tibshirani, R. (1991). Statistical data analysis in the computer age. Science, 253(5018), 390–395.

    Google Scholar 

  • England, P., & Molnar, P. (1997). Active deformation of Asia: From kinematics to dynamics. Science, 278(5338), 647–650.

    Google Scholar 

  • Gan, W., Zhang, P., Shen, Z., Niu, Z., Wang, M., Wan, Y., et al. (2007). Presentday crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research: Solid Earth, 112(B8), B08416.

    Google Scholar 

  • Hu, J., Badal, J., Yang, H., Li, G., & Peng, H. (2018). Comprehensive crustal structure and seismological evidence for lower crustal flow in the southeast margin of Tibet revealed by receiver functions. Gondwana Research, 55, 42–59.

    Google Scholar 

  • Hu, J., Su, Y., Zhu, X., & Chen, Y. (2005). S wave velocity and Poisson’s ratio structure of the crust in Yunnan and its implication. Science in China Series D, 48(2), 210–218.

    Google Scholar 

  • Hu, J., Yang, H., Li, G., & Peng, H. (2015). Seismic upper mantle discontinuities beneath Southeast Tibet and geodynamic implications. Gondwana Research, 28(3), 1032–1047.

    Google Scholar 

  • Julià, J., Ammon, C. J., Herrmann, R. B., & Correig, A. M. (2000). Joint inversion of receiver function and surface wave dispersion observations. Geophysical Journal International, 143(1), 99–112.

    Google Scholar 

  • Kind, R., Yuan, X., & Kumar, P. (2012). Seismic receiver functions and the lithosphere–asthenosphere boundary. Tectonophysics, 536–537, 25–43.

    Google Scholar 

  • Klemperer, S. L. (2006). Crustal flow in Tibet: A review of geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow. Geological Society, London, Special Publication, 268(1), 39–70.

    Google Scholar 

  • Kong, F., Wu, J., Liu, K. H., & Gao, S. (2016). Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas. Earth and Planetary Science Letters, 442, 72–79.

    Google Scholar 

  • Langston, C. A. (1979). Structure under Mount Rainer, Washington, inferred from teleseismic body wave. Journal of Geophysical Research: Solid Earth, 84(B9), 4749–4762.

    Google Scholar 

  • Lei, J., Li, Y., Xie, F., Teng, J., Zhang, G., Sun, C., et al. (2014). Pn anisotropic tomography and dynamics under eastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 119(3), 2174–2198.

    Google Scholar 

  • Lei, J., Zhao, D., & Su, Y. (2009). Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. Journal of Geophysical Research: Solid Earth, 114(B5), B05302.

    Google Scholar 

  • Li, C., van der Hilst, R., Meltzer, A. S., & Engdahl, E. R. (2008). Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1–2), 157–168.

    Google Scholar 

  • Ligorría, J. P., & Ammon, C. J. (1999). Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5), 1395–1400.

    Google Scholar 

  • Liu, Q. Y., van der Hilst, R. D., Li, Y., Yao, H. J., Chen, J. H., Guo, B., et al. (2014). Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nature Geoscience, 7(5), 361–365.

    Google Scholar 

  • Meltzer, A. S., Bürgmann, R., van der Hilst, R. D., King, R., Chen, Z., Koons, P. O., et al. (2007). Geodynamics of the southeast Tibetan Plateau from seismic anisotropy and geodesy. Geology, 35(6), 563–566.

    Google Scholar 

  • Molnar, P., & Tapponnier, P. (1975). Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189(4201), 419–426.

    Google Scholar 

  • Peng, H., Yang, H., Hu, J., & Badal, J. (2017). Three-dimensional S-velocity structure of the crust in the southeast margin of the Tibetan plateau and geodynamic implications. Journal of Asian Earth Sciences, 148, 210–222.

    Google Scholar 

  • Rippe, D., & Unsworth, M. (2010). Quantifying crustal flow in Tibet with magnetotelluric data. Physics of the Earth and Planetary Interiors, 179(3–4), 107–121.

    Google Scholar 

  • Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E. C., Chen, Z. L., Shen, F., et al. (1997). Surface deformation and lower crustal flow in Eastern Tibet. Science, 276(5313), 788–790.

    Google Scholar 

  • Royden, L. H., Burchfiel, B. C., & van der Hilst, R. D. (2008). The geological evolution of the Tibetan Plateau. Science, 321(5892), 1054–1058.

    Google Scholar 

  • Sun, Y., Liu, J., Zhou, K., et al. (2015). Crustal structure and deformation under the Longmenshan and its surroundings revealed by receiver function data. Physics of the Earth and Planetary Interiors, 244, 11–22.

    Google Scholar 

  • Sun, Y., Niu, F., Liu, H., Chen, Y., & Liu, J. (2012). Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data. Earth and Planetary Science Letters, 349–350, 186–197.

    Google Scholar 

  • Tapponnier, P., Peltzer, G., & Armijo, R. (1986). On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications, 19(1), 113–157.

    Google Scholar 

  • Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611–616.

    Google Scholar 

  • Wang, E. C., & Burchfiel, B. C. (2000). Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeast part of the Tibetan Plateau. Geological Society of America Bulletin, 112(3), 413–423.

    Google Scholar 

  • Wang, C. Y., Chan, W. W., & Mooney, W. D. (2003). Three-dimensional velocity structure of crust and uppermantle in southwestern China and its tectonic implications. Journal of Geophysical Research: Solid Earth, 108(B9), 2442.

    Google Scholar 

  • Wang, C. Y., Han, W. B., Wu, J. P., Lou, H., & Chan, W. (2007a). Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. Journal of Geophysical Research: Solid Earth, 112(B7), B07307.

    Google Scholar 

  • Wang, C. Y., Lou, H., Silver, P. G., Zhu, L., & Chang, L. (2010). Crustal structure variation along 30°N in the eastern Tibetan Plateau and its tectonic implications. Earth and Planetary Science Letters, 289(3–4), 367–376.

    Google Scholar 

  • Wang, W., Wu, J., Fang, L., Lai, G., & Cai, Y. (2017). Crustal thickness and Poisson’s ratio in southwest China based on data from dense seismic arrays. Journal of Geophysical Research: Solid Earth, 122(9), 7219–7235.

    Google Scholar 

  • Wang, W., Wu, J., Fang, L., Lai, G., Yang, T., & Cai, Y. (2014). S wave velocity structure in southwest China from surface wave tomography and receiver functions. Journal of Geophysical Research: Solid Earth, 119(2), 1061–1078.

    Google Scholar 

  • Wang, Y., Zhang, X., Jiang, C., Wei, H., & Wan, J. (2007b). Tectonic controls on the late Miocene–Holocene volcanic eruptions of the Tengchong volcanic field along the southeast margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 30(2), 375–389.

    Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1998). New, improved version of the generic mapping tool released. Eos, Transactions American Geophysical Union, 79, 579.

    Google Scholar 

  • Xie, J., Ritzwoller, M. H., Shen, W., Yang, Y., Zheng, Y., & Zhou, L. (2013). Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. Journal of Geophysical Research: Solid Earth, 118(8), 4226–4252.

    Google Scholar 

  • Xu, L., Rondenay, S., & van der Hilst, R. D. (2007). Structure of the crust beneath the southeast Tibetan Plateau from teleseismic receiver functions. Physics of the Earth and Planetary Interiors, 165(3–4), 176–193.

    Google Scholar 

  • Yang, Y., & Liu, M. (2009). Crustal thickening and lateral extrusion during the Indo-Asian collision: A 3D viscous flow model. Tectonophysics, 465(1–4), 128–135.

    Google Scholar 

  • Yao, H., Beghein, C., & van der Hist, R. D. (2008). Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis: II. Crustal and upper-mantle structure. Geophysical Journal International, 173(1), 205–219.

    Google Scholar 

  • Yao, H., van der Hilst, R. D., & Montagner, J. P. (2010). Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. Journal of Geophysical Research: Solid Earth, 115(B12), B12307.

    Google Scholar 

  • Yin, A., & Harrison, T. M. (2000). Geologic evolution of the Himalayan–Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1), 211–280.

    Google Scholar 

  • Zandt, G., & Ammon, C. J. (1995). Continental-crust composition constrained by measurements of crustal Poisson ratio. Nature, 374(9), 152–154.

    Google Scholar 

  • Zhang, P. (2013). A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584, 7–22.

    Google Scholar 

  • Zhang, Z., Bai, Z., Klemperer, S. L., Tian, X., Xu, T., Chen, Y., et al. (2013). Crustal structure across the northeastern Tibet from wideangle seismic profiling: Constraints on Caledonian Qilian orogeny and its reactivation. Tectonophysics, 606, 140–159.

    Google Scholar 

  • Zhang, Z., Bai, Z., Wang, C., Teng, J., Lv, Q., Li, J., et al. (2005a). The crustal structure under Sanjiang and its dynamic implications: Revealed by seismic reflection/refraction profile between Zhefang and Binchuan, Yunnan. Science in China Series D, 48(9), 1329–1336.

    Google Scholar 

  • Zhang, Z., Bai, Z., Wang, C., Teng, J., Lv, Q., Li, J., et al. (2005b). Crustal structure of Gondwana-and Yangtze-typed blocks: An example by wide-angle seismic profile from Menglian to Malong in western Yunnan. Science in China Series D, 48(11), 1828–1836.

    Google Scholar 

  • Zhang, Z., Deng, Y., Teng, J., Wang, C., Gao, R., Che, Y., et al. (2011). An overview of the crustal structure of the Tibetan Plateau after 35 years of deep seismic soundings. Journal of Asian Earth Sciences, 40(4), 977–989.

    Google Scholar 

  • Zhang, P., Shen, Z., Wang, M., & Gan, W. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809–812.

    Google Scholar 

  • Zhang, Z., Wang, Y., Chen, Y., Houseman, G. A., Tian, X., Wang, E., et al. (2009). Crustal structure across Longmenshan fault belt from passive source seismic profiling. Geophysical Research Letters, 36(17), L17310.

    Google Scholar 

  • Zhang, Z., Yuan, X., Chen, Y., Tian, X., Kind, R., Li, X., et al. (2010). Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin. Earth and Planetary Science Letters, 292(3–4), 254–264.

    Google Scholar 

  • Zhu, L., & Kanamori, H. (2000). Moho depth variations in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2), 2969–2980.

    Google Scholar 

Download references

Acknowledgements

We are very grateful to the editor Dr. Arthur Snoke and two anonymous reviewers for their helpful comments and constructive suggestions that made possible a better presentation of this paper. The National Natural Science Foundation of China provided financial support for this research work (Grants 41304076, 41374106 and 41464003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiafu Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Hu, J., Badal, J. et al. S-Wave Velocity Images of the Crust in the Southeast Margin of Tibet Revealed by Receiver Functions. Pure Appl. Geophys. 176, 4223–4241 (2019). https://doi.org/10.1007/s00024-019-02178-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02178-4

Keywords

Navigation