Skip to main content

Reassessment of the 1907 Sumatra “Tsunami Earthquake” Based on Macroseismic, Seismological, and Tsunami Observations, and Modeling

A Correction to this article was published on 06 October 2020

This article has been updated

Abstract

On 4 January 1907, an earthquake occurred off the west coast of Sumatra, Indonesia, with an instrumental surface-wave magnitude (MS) in the range of 7.5–8.0 at periods of ~ 40 s. The tsunami it generated was destructive on the islands of Nias and Simeulue, where it killed hundreds and gave rise to the legend of the S’mong. This tsunami was also observed in other parts of the Indian Ocean basin. Relative to its instrumented magnitude, the size of the tsunami was anomalous, qualifying the event as a “tsunami earthquake”. However, unusually for a tsunami earthquake, the shaking on Nias was severe (7 EMS). We revisit the 1907 earthquake with a multidisciplinary approach by extracting evidence describing shaking effects or the tsunami from written documents and by acquiring new seismograms. Combining these, we discriminate two large earthquakes within an hour of each other with clear differences in seismological character. The first we interpret to be a tsunami earthquake with characteristic low levels of shaking, an estimated average seismic moment (M0) of 2.5 × 1028 dyn cm (MW ≈ 8.2) in the frequency band 6–8 mHz, and an epicentral location close to the front of the Sunda Megathrust. The seismograms we analyzed also document a regular growth of moment with period, approaching MW ≈ 8.4 at the longest resolvable period (~ 170 s). For the second earthquake that caused damage on Nias, we estimate MS ≈ 7 based on seismograms and phase data. We also identify two MS ≈ 6 aftershocks within 24 h of the mainshock. Additionally, we present a dataset of 88 locations within the Indian Ocean basin where the tsunami was observed. Using a subset of these, we forward modeled the tsunami to propose a seismic rupture model extending along the Sunda Megathrust for about 220 km (~ 94.7°E to ~ 97°E) with a maximum modeled slip of ~ 21 m. Our new rupture model provides an acceptable fit to our new dataset of tsunami runup and inundation values from 88 local and far-field locations in the Indian Ocean basin. We also urge caution against an over-reliance on the S’mong legend for tsunami evacuation as its premise, that a tsunami will only follow an earthquake with very severe ground motions, is rendered ineffective for tsunami earthquakes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Change history

  • 06 October 2020

    Due to an unfortunate oversight we did not publish the hypothetical slip model

Notes

  1. The old Dutch measure “een paal” used in colonial Indonesia is equivalent to 1507 m (Staring 1871).

References

  • Abe, K., & Noguchi, S. (1983). Determination of magnitude for large shallow earthquakes 1898–1917. Physics of the Earth and Planetary Interiors, 32, 45–59.

    Google Scholar 

  • Abercrombie, R. E., Antolik, M., Felzer, K., & Ekström, G. (2001). The 1994 Java tsunami earthquake: Slip over a subducting seamount. Journal of Geophysical Research, 106(B4), 6595–6607. https://doi.org/10.1029/2000jb900403.

    Article  Google Scholar 

  • Ambraseys, N., & Adams, R. D. (1996). Large magnitude Central American earthquakes, 1898–1994. Geophysical Journal International, 127, 665–692.

    Google Scholar 

  • Ambraseys, N., & Douglas, J. (2000). Reappraisal of surface wave magnitudes in the Eastern Mediterranean region and the Middle East. Geophysical Journal International, 141(2), 357–373. https://doi.org/10.1046/j.1365-246x.2000.00084.x.

    Article  Google Scholar 

  • Ambraseys, N., & Douglas, J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 159(1), 165–206. https://doi.org/10.1111/j.1365-246x.2004.02323.x.

    Article  Google Scholar 

  • Ando, M. (1975). Source mechanism and tectonic significance of historical earthquakes along the Nankai Trough, Japan. Tectonophysics, 27, 119–140.

    Google Scholar 

  • Anonymous. (1909). Vulkanische verschijnselen en aardbevingen in den Oost-Indischen Archipel waargenomen gedurende het jaar 1907. Natuurkundig tijdschrift voor Nederlandsch Indië, 68(2), 117–201.

    Google Scholar 

  • Anonymous. (1931). The seismological bulletin in Osaka (1882–1929) (p. 132). Osaka: Osaka Meteorological Observatory.

    Google Scholar 

  • Baumwoll, J. (2008). The value of indigenous knowledge for disaster risk reduction: A unique assessment tool for reducing community vulnerability to natural disasters. Webster University, Vienna, Master of Arts in International Relations thesis, p 153.

  • Bell, R., Holden, C., Power, W., Wang, X., & Downes, G. (2014). Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount. Earth and Planetary Science Letters, 397, 1–9. https://doi.org/10.1016/j.epsl.2014.04.005.

    Article  Google Scholar 

  • Ben-Menahem, A., & Rosenman, M. (1972). Amplitude patterns of tsunami waves from submarine earthquakes. Journal of Geophysical Research, 77, 3097–3128.

    Google Scholar 

  • Bertho, J. (1910). Tremblements de terre, Bulletin de la Société Astronomique de France et revue mensuelle d’Astronomie, de météorologie et de Physique du Globe, Séance du 5 Octobre 1910, Communications écrites, p. 481, Paris.

  • Bilek, S. L., & Engdahl, E. R. (2007). Rupture characterization and relocation of aftershocks for the 1994 and 2006 tsunami earthquakes in the Java subduction zone. Geophysical Research Letters, 34, L20311. https://doi.org/10.1029/gl031357.

    Article  Google Scholar 

  • Bilek, S. L., & Lay, T. (1999). Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature, 400, 443–446.

    Google Scholar 

  • Blaser, L. F., Krüger, M. Ohrnberger, & Scherbaum, F. (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of the Seismological Society of America, 100, 2914–2926. https://doi.org/10.1785/0120100111.

    Article  Google Scholar 

  • Borrero, J. C., Weiss, R., Okal, E. A., Hidayat, R., Suranto, D. Arcas, & Titov, V. V. (2009). The tsunami of 12 September 2007, Bengkulu province, Sumatra, Indonesia: Post-tsunami survey and numerical modelling. Geophysical Journal International, 178, 180–194.

    Google Scholar 

  • Bourgeois, J., Petroff, C., Yeh, H., Titov, V., Synolakis, C. E., Benson, B., et al. (1999). Geologic setting, field survey and modeling of the Chimbote, Northern Peru, tsunami of 21 February 1996. Pure and Applied Geophysics, 154(3), 513–540. https://doi.org/10.1007/s000240050242.

    Article  Google Scholar 

  • Bradley, K. E., Feng, L., Hill, E. M., Natawidjaja, D. H., & Sieh, K. (2017). Implications of the diffuse deformation of the Indian Ocean lithosphere for slip partitioning of oblique plate convergence in Sumatra. Journal of Geophysical Research Solid Earth, 122, 572–591. https://doi.org/10.1002/2016JB013549.

    Article  Google Scholar 

  • Briggs, M. J., Synolakis, C. E., Harkins, G. S., & Green, D. R. (1995). Laboratory experiments of tsunami run-up on a circular island. Pure and Applied Geophysics, 144, 569–594.

    Google Scholar 

  • Chlieh, M., Avouac, J.-P., Hjörleifsdóttir, V., Song, T.-R. A., Ji, C., Sieh, K., et al. (2007). Coseismic slip and afterslip of the great M 9.15 Sumatra-Andaman earthquake of 2004. Bulletin of the Seismological Society of America, 97, S152–S173. https://doi.org/10.1785/0120050631.

    Article  Google Scholar 

  • Choy, G. L., & Boatwright, J. (2007). The energy radiated by the 26 December 2004 Sumatra-Andaman earthquake estimated from 10-minute P-wave windows. Bulletin of the Seismological Society of America, 97, S18–S24.

    Google Scholar 

  • Cochran, U., Berryman, K., Zachariasen, J., Mildenhall, D., Hayward, B., Southall, K., et al. (2006). Paleoecological insights into subduction zone earthquake occurrence, eastern North Island, New Zealand. Geological Society of America Bulletin, 118(9–10), 1051–1074. https://doi.org/10.1130/B25761.1.

    Article  Google Scholar 

  • Convers, J. A., & Newman, A. V. (2013). Rapid earthquake rupture duration estimates from teleseismic energy rates, with application to real-time warning. Geophysical Research Letters, 40, 5844–5848.

    Google Scholar 

  • Cruz, G., & Wyss, M. (1983). Large earthquakes, mean sea level, and tsunamis along the Pacific Coast of Mexico and Central America. Bulletin of the Seismological Society of America, 73, 553–570.

    Google Scholar 

  • Davies, J., Sykes, L., House, L., & Jacob, K. (1981). Shumagin Seismic Gap, Alaska Peninsula: History of great earthquakes, tectonic setting, and evidence for high seismic potential. Journal of Geophysical Research, 86, 3821–3855.

    Google Scholar 

  • de Groot-Hedlin, C. D. (2005). Estimation of the rupture length and velocity of the Great Sumatran earthquake of December 26, 2004 using hydroacoustic signals. Geophysical Research Letters, 32, 11.

    Google Scholar 

  • de Moidrey, J. T. (1912). Bulletin des observations—Année 1907: Observatoire magnétique météorologique et sismologique de Zi-Ka-Wei (Chine), Fascicule C Sismologie, La Mission Catholique (Les missionnaires de la Compagnie de Jésus). Shanghai, 33, 12.

    Google Scholar 

  • Doser, D. I., & Webb, T. H. (2003). Source parameters of large historical (1917–1961) earthquakes, North Island, New Zealand. Geophysical Journal International, 152, 795–832. https://doi.org/10.1046/j.1365-246x.2003.01895.x.

    Article  Google Scholar 

  • Duda, S. J. (1965). Secular seismic energy release in the circum-Pacific belt. Tectonophysics, 2, 409–452.

    Google Scholar 

  • Ebel, J. E., & Chambers, D. W. (2016). Using the locations of the M > 4 earthquakes to delineate the extents of the ruptures of past major earthquakes. Geophysical Journal International, 207, 862–875.

    Google Scholar 

  • Engdahl, E. R., Villaseñor, A., DeShon, H. R., & Thurber, C. H. (2007). Teleseismic relocation and assessment of seismicity (1918–2005) in the region of the 2004 MW 9.0 Sumatra-Andaman and 2005 MW 8.6 Nias Island great earthquakes. Bulletin of the Seismological Society of America, 97, S43–S61.

    Google Scholar 

  • Erskine, C.F. (1908). The operations of the Field Parties—Tidal and Levelling. In: F.B. Longe (ed) General report on the operations of the Survey of India administered under the Government of India during 190607, Calcutta, p 28.

  • Erskine, C. F. (1909). Tidal and levelling operations, in Extracts from narrative reports of officers of the Survey of India for the season 1906–07 (ed. S.G. Burrard), Calcutta, pp. 95–96.

  • Fan, W., Bassett, W. D., Jiang, J., Shearer, P. M., & Ji, C. (2017). Rupture evolution of the 2006 Java tsunami earthquake and the possible role of splay faults. Tectonophysics, 721, 143–150. https://doi.org/10.1016/j.tecto.2017.

    Article  Google Scholar 

  • Feng, L., Hill, E. M., Banerjee, P., Hermawan, I., Tsang, L. L. H., Natawidjaja, D. H., et al. (2015). A unified GPS-based earthquake catalog for the Sumatran plate boundary between 2002 and 2013. Journal of Geophysical Research Solid Earth, 120, 3566–3598. https://doi.org/10.1002/2014jb011661.

    Article  Google Scholar 

  • Franke, D., Schnabel, M., Ladage, S., Tappin, D. R., Neben, S., Djajadihardja, Y. S., et al. (2008). The great Sumatra-Andaman earthquakes—Imaging the boundary between the ruptures of the great 2004 and 2005 earthquakes. Earth and Planetary Science Letters, 269, 118–130. https://doi.org/10.1016/j.epsl.2008.01.047.

    Article  Google Scholar 

  • Fujino, S., Sieh, K., Meltzner, A. J., Yulianto, E., & Chiang, H.-W. (2014). Ambiguous correlation of precisely dated coral detritus with the tsunamis of 1861 and 1907 at Simeulue Island, Aceh Province, Indonesia. Marine Geology, 357, 384–391. https://doi.org/10.1016/j.margeo.2014.09.047.

    Article  Google Scholar 

  • Fukao, Y. (1979). Tsunami earthquakes and subduction processes near deep-sea trenches. Journal of Geophysical Research, 84(B5), 2303–2314.

    Google Scholar 

  • Geiger, L. (1909). Seismische Registrierungen in Göttingen im Jahre 1907 mit einem Vorwort über die Bearbeitung der Erdbebendiagramme. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen (pp. 1–44). Göttingen: Mathematisch-physikalische Klasse.

    Google Scholar 

  • Geist, E. L., & Bilek, S. L. (2001). Effect of depth-dependent shear modulus on tsunami generation along subduction zones. Geophysical Research Letters, 28, 1315–1318. https://doi.org/10.1029/2000gl012385.

    Article  Google Scholar 

  • Geller, R. J. (1976). Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66, 1501–1523.

    Google Scholar 

  • Geller, R. J., & Kanamori, H. (1977). Magnitudes of great shallow earthquakes from 1904 to 1952. Bulletin of the Seismological Society of America, 67(3), 587–598.

    Google Scholar 

  • Golitsyn, B. B. (1908). Seismometriche Beobachtungen in Pulkowa. Académie impériale des Sciences, Commission sismique permanente, 3(1), 117–172.

    Google Scholar 

  • Goodstein, J. R., Kanamori, H., & Lee, W. H. K. (1980). Seismology microfiche publications from the Caltech archives. Bulletin of the Seismological Society of America, 70, 657–658.

    Google Scholar 

  • Grünthal, G. (Ed.). (1998). The European Macroseismic Scale EMS-98, Conseil de l’Europe (Vol. 15, p. 101). Luxembourg: Cahiers du Centre Européen de Géodynamique et de Séismologie.

    Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1954). Seismicity of the Earth and associated phenomena (p. 310). Princeton: Princeton.

    Google Scholar 

  • Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research, 117, B01302. https://doi.org/10.1029/2011jb008524.

    Article  Google Scholar 

  • Heinrich, P., Schindelé, F., Guibourg, S., & Ihmlé, P. F. (1998). Modelling of the February 1996 Peruvian tsunami. Geophysical Research Letters, 25(14), 2687–2690. https://doi.org/10.1029/98gl01780.

    Article  Google Scholar 

  • Hill, E. M., Borrero, J. C., Huang, Z., Qiu, Q., Banerjee, P., Natawidjaja, D. H., et al. (2012). The 2010 MW 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data. Journal of Geophysical Research, 117, B06402. https://doi.org/10.1029/2012jb009159.

    Article  Google Scholar 

  • Hodgson, F. N. (1934). Malacca Strait Pilot, comprising Malacca Strait and its Northern Approaches (p. 430). London: Singapore Strait and the West Coast of Sumatra, Hydrographic Department -Admiralty.

    Google Scholar 

  • Hough, S. E. (2013). Missing great earthquakes. Journal of Geophysical Research Solid Earth, 118, 1098–1108. https://doi.org/10.1002/jgrb.50083.

    Article  Google Scholar 

  • Hough, S. E., Bilham, R., Ambraseys, N., & Feldl, N. (2005). Revisiting the 1897 Shillong and 1905 Kangra earthquakes in northern India: Site response, Moho reflections and a triggered earthquake. Current Science, 88(10), 1632–1638.

    Google Scholar 

  • Hough, S. E., Martin, S. S., Gahalaut, V., Joshi, A., Landes, M., Bossu, R. (2016). A comparison of observed and predicted ground motions from the 2015 MW7.8 Gorkha, Nepal, earthquake. Natural Hazards, 84(3):1661–1684

    Google Scholar 

  • Ide, S., Imamura, F., Yoshida, Y., & Abe, K. (1993). Source characteristics of the Nicaraguan tsunami earthquake of September 2, 1992. Geophysical Research Letters, 20, 863–866.

    Google Scholar 

  • Ihmlé, P. F., Gomez, J.-M., Heinrich, P., & Guibourg, S. (1998). The 1996 Peru tsunamigenic earthquake: Broadband source process. Geophysical Research Letters, 25(14), 2691–2694.

    Google Scholar 

  • Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature, 435, 933–936.

    Google Scholar 

  • Jacob, J., Dyment, J., & Yatheesh, V. (2014). Revisiting the structure, age, and evolution of the Wharton Basin to better understand subduction under Indonesia. Journal of Geophysical Research, 119, 169–190. https://doi.org/10.1002/2013jb010285.

    Article  Google Scholar 

  • Kagan, Y. Y. (1991). 3-D rotation of double-couple earthquake sources. Geophysical Journal International, 106, 709–716.

    Google Scholar 

  • Kajiura, K. (1972). The directivity of energy radiation of the tsunami generated in the vicinity of a continental shelf. Journal of Oceanography, 28(6), 260–277. https://doi.org/10.1007/bf02109296.

    Article  Google Scholar 

  • Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6, 346–359.

    Google Scholar 

  • Kanamori, H., Rivera, L., & Lee, W. H. K. (2010). Historical seismograms for unravelling a mysterious earthquake: The 1907 Sumatra earthquake. Geophysical Journal International, 183, 358–374. https://doi.org/10.1111/j.1365-246x.2010.04731.x.

    Article  Google Scholar 

  • Kárník, V., Kondorskaya, N. V., Ju, V., Riznitchenko, E. F., Savarensky, S. L., Soloviev, N. V., et al. (1962). Standardization of the earthquake magnitude scale. Studia Geophysica et Geodaetica, 6(1), 41–48.

    Google Scholar 

  • Kikuchi, M., & Kanamori, H. (1982). Inversion of complex body waves. Bulletin of the Seismological Society of America, 72(2), 491–506.

    Google Scholar 

  • Kikuchi, M., & Kanamori, H. (1986). Inversion of complex body waves—II. Physics of the Earth and Planetary Interiors, 43(3), 205–222.

    Google Scholar 

  • Kikuchi, M., & Kanamori, H. (1991). Inversion of complex body waves—III. Bulletin of the Seismological Society of America, 81(6), 2335–2350.

    Google Scholar 

  • Konca, A. O., Avouac, J.-P., Sladen, A., Meltzner, A. J., Sieh, K., Fang, P., et al. (2008). Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature, 456, 631–635. https://doi.org/10.1038/nature07572.

    Article  Google Scholar 

  • Lambert, J., & Terrier, M. (2011). Historical tsunami database for France and its overseas territories. Natural Hazards and Earth System Science, 11, 1037–1046. https://doi.org/10.5194/nhess-11-1037-2011.

    Article  Google Scholar 

  • Levitski, G.V. (1909). Январь - июня 1907 года, Известия постоянной центральной сейсмической комиссии, Императорская академия наук (January to June 1907, Report of the Permanent Central Seismic Commission, Imperial Academy of Sciences, 3(2), 17–21, Saint Petersburg

  • Li, L., Switzer, A. D., Wang, Y., Weiss, R., Qiu, Q., Chan, C.-H., et al. (2015). What caused the mysterious eighteenth century tsunami that struck the southwest Taiwan coast? Geophysical Research Letters, 42, 8498–8506. https://doi.org/10.1002/2015gl065567.

    Article  Google Scholar 

  • Liu, P.L.F., Woo, S.B., & Cho, Y.S. (1998). Computer programs for tsunami propagation and inundation. Technical report, Cornell University Ithaca, New York.

  • López, A. M., & Okal, E. A. (2006). A seismological reassessment of the 1946 Aleutian “tsunami” earthquake. Geophysical Journal International, 165, 835–849.

    Google Scholar 

  • Martin, S. S. (2005). Intensity Distribution from the 2004 M 9.0 Sumatra-Andaman Earthquake. Seismological Research Letters, 76(3):321–330.

    Google Scholar 

  • Martin, S. & Szeliga, W. (2010). A Catalog of Felt Intensity Data for 570 Earthquakes in India from 1636 to 2009. Bulletin of the Seismological Society of America, 100(2):562–569.

    Google Scholar 

  • Martin, S. S., & Hough, S. E. (2016). Reply to, “Comment on ‘Ground Motions from the 2015 MW 7.8 Gorkha, Nepal, Earthquake Constrained by a Detailed Assessment of Macroseismic Data’ by Stacey Martin, Susan E. Hough and Charleen Hung” by Andrea Tertulliani, Laura Graziani, Corrado Castellano, Alessandra Maramai, Antonio Rossi. Seismological Research Letters, 87(4), 369–377. https://doi.org/10.1785/0220160061.

    Article  Google Scholar 

  • Masó, M. S. (1907). Seismological Bulletin for January 1907, Monthly Bulletin 1907, Department of the Interior—Weather Bureau (pp. 37–39). Manila: Manila Central Observatory.

    Google Scholar 

  • McAdoo, B. G., Dengler, L., Prasetya, G., & Titov, V. (2006). Smong: How an oral history saved thousands on Indonesia’s Simeulue island during the December 2004 and March 2005 tsunamis. Earthquake Spectra, 22(S3), 661–669.

    Google Scholar 

  • McCaffrey, R. (2007). The next great earthquake. Science, 315, 1675–1676.

    Google Scholar 

  • McCloskey, J., Lange, D., Tilman, F., Nalbant, S. S., Bell, A. F., Natawidjaja, D. H., et al. (2010). The September 2009 Padang earthquake. Nature Geoscience, 3, 70–71.

    Google Scholar 

  • Meltzner, A. J., Sieh, K., Chiang, H.-W., Shen, C.-C., Suwargadi, B. W., Natawidjaja, D. H., et al. (2012). Persistent termini of 2004- and 2005-like ruptures of the Sunda megathrust. Journal of Geophysical Research, 117, B04405. https://doi.org/10.1029/2011jb008888.

    Article  Google Scholar 

  • Meltzner, A. J., Sieh, K., Chiang, H.-W., Shen, C.-C., Suwargadi, B. W., Natawidjaja, D. H., et al. (2010). Coral evidence for earthquake recurrence and an AD 1390–1455 cluster at the south end of the 2004 Aceh-Andaman rupture. Journal of Geophysical Research, 115, B10. https://doi.org/10.1029/2010jb007499.

    Article  Google Scholar 

  • Meltzner, A. J., Sieh, K., Chiang, H.-W., Wu, C.-C., Tsang, L. L. H., Shen, C.-C., et al. (2015). Time-varying interseismic strain rates and similar seismic ruptures on the Nias-Simeulue patch of the Sunda megathrust. Quaternary Science Reviews, 122, 258–281. https://doi.org/10.1016/j.quascirev.2015.06.003.

    Article  Google Scholar 

  • Miyoshi, H. (1955). Directivity of the recent tsunamis. Journal of the Oceanographic Society of Japan, 11(4), 151–156.

    Google Scholar 

  • Monecke, K., Finger, W., Klarer, D., Kongko, W., McAdoo, B., Moore, A. L., et al. (2008). A 1,000-year sediment record of tsunami recurrence in northern Sumatra. Nature, 455, 1232–1234.

    Google Scholar 

  • Morgan, P. M., Feng, L., Meltzner, A. J., Lindsey, E. O., Tsang, L. L. H., & Hill, E. M. (2017). Sibling earthquakes generated within a persistent rupture barrier on the Sunda megathrust under Simeulue Island. Geophysical Research Letters, 44, 2159–2166. https://doi.org/10.1002/2016gl071901.

    Article  Google Scholar 

  • Mori, N., Takahashi, T., Yasuda, T., & Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophysical Research Letters, 38, L00G14. https://doi.org/10.1029/2011gl049210.

    Article  Google Scholar 

  • Musson, R. M. W., Grunthal, G., & Stucchi, M. (2010). The comparison of macroseismic intensity scales. Journal of Seismology, 14, 413–428. https://doi.org/10.1007/s10950-009-9172-0.

    Article  Google Scholar 

  • Natawidjaja, D. H., Sieh, K., Chlieh, M., Galetzka, J., Suwargadi, B. W., Cheng, H., et al. (2006). Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls. Journal of Geophysical Research, 111, B06403. https://doi.org/10.1029/2005jb004025.

    Article  Google Scholar 

  • Newcomb, K. R., & McCann, W. R. (1987). Seismic history and seismotectonics of the Sunda Arc. Journal of Geophysical Research, 92(B1), 421–439. https://doi.org/10.1029/jb092ib01p00421.

    Article  Google Scholar 

  • Newman, A. V., Feng, L., Fritz, H. M., Lifton, Z. M., Kalligeris, N., & Wei, Y. (2011a). The energetic 2010 MW 7.1 Solomon Islands tsunami earthquake. Geophysical Journal International, 186, 775–781. https://doi.org/10.1111/j.1365-246x.2011.05057.x.

    Article  Google Scholar 

  • Newman, A. V., Hayes, G., Wei, Y., & Convers, J. (2011b). The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation. Geophysical Research Letters, 38(5), L05302. https://doi.org/10.1029/2010gl046498.

    Article  Google Scholar 

  • Newman, A. V., & Okal, E. A. (1998). Teleseismic estimates of radiated seismic energy: The E/M0 discriminant for tsunami earthquakes. Journal of Geophysical Research, 103, 26885–26898.

    Google Scholar 

  • Nutalaya, P., Sodsri, S., & Arnold, E. P. (1985). Series on seismology, Thailand. Southeast Asia Association of Seismology and Earthquake Engineering, 2, 409.

    Google Scholar 

  • Obermeier, S. F., & Dickenson, S. E. (2000). Liquefaction evidence for the strength of ground motions resulting from Late Holocene Cascadia subduction earthquakes, with emphasis on the event of 1700 A.D. Bulletin of the Seismological Society of America, 90, 876–896.

    Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Google Scholar 

  • Okal, E. A. (2011). Tsunamigenic earthquakes: Past and present milestones. Pure and Applied Geophysics, 168, 969–996.

    Google Scholar 

  • Okal, E. A. (2013). From 3-Hz P waves to 0S2: No evidence of a slow component to the source of the 2011 Tohoku earthquake. Pure and Applied Geophysics, 170, 963–973.

    Google Scholar 

  • Okal, E. A., & Borrero, J. C. (2011). The “tsunami earthquake” of 22 June 1932 in Manzanillo, Mexico: Seismological study and tsunami simulation. Geophysical Journal International, 187, 1443–1459.

    Google Scholar 

  • Okal, E. A., Fritz, H. M., Raveloson, R., Joelson, G., Pančošková, P., & Rambolamanana, G. (2006a). Madagascar field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra, 22, S263–S283.

    Google Scholar 

  • Okal, E. A., Fritz, H. M., & Sladen, A. (2009). 2004 Sumatra tsunami surveys in the Comoro Islands and Tanzania and regional tsunami hazard from future Sumatra events. South African Journal of Geology, 112, 343–358.

    Google Scholar 

  • Okal, E.A., & Kirby, S.H. (2002). Energy-to-moment ratios for damaging intraslab earthquakes: Preliminary results on a few case studies. USGS Open File Report, 02-328, pp. 127–131.

  • Okal, E. A., Kirby, S. H., & Kalligeris, N. (2016). The Showa Sanriku earthquake of 1933 March 2: A global seismological reassessment. Geophysical Journal International, 206, 1492–1514.

    Google Scholar 

  • Okal, E. A., & Newman, A. V. (2001). Tsunami earthquakes: The quest for a regional signal. Physics of the Earth and Planetary Interiors, 124, 45–70.

    Google Scholar 

  • Okal, E. A., & Saloor, N. (2017). Historical tsunami earthquakes in the Southwestern Pacific: An extension to ∆ > 80° of the energy-to-moment parameter Θ. Geophysical Journal International, 210, 852–873.

    Google Scholar 

  • Okal, E. A., Sladen, A., & Okal, E. A.-S. (2006b). Rodrigues, Mauritius and Réunion Islands field survey after the December 2004 Indian Ocean tsunami. Earthquake Spectra, 22, S241–S261.

    Google Scholar 

  • Okal, E. A., & Talandier, J. (1989). Mm: A variable period mantle magnitude. Journal of Geophysical Research, 94, 4169–4193.

    Google Scholar 

  • O’Loughlin, F. E., Paiva, R. C. D., Durand, M., Alsdorf, D. E., & Bates, P. D. (2016). A multi-sensor approach towards a global vegetation corrected SRTM DEM product. RSEnv, 182(Supplement C), 49–59. https://doi.org/10.1016/j.rse.2016.04.018.

    Article  Google Scholar 

  • Patterson, J. (1909). The Simla seismograms obtained between June 1905 and November 1908. Memoirs of the Indian Meteorological Department, 20(3), 97–143.

    Google Scholar 

  • Pechau, W. (1907). Monatliche Erdbebenberichte der Seismischen Station zu Jena—1907, Ant (p. 28). Jena: Kämpfe, Buchdruckerei.

    Google Scholar 

  • Pelayo, A. M., & Wiens, D. A. (1990). The November 20, 1960 Peru tsunami earthquake: Source mechanism of a slow event. Geophysical Research Letters, 17(6), 661–664.

    Google Scholar 

  • Pelayo, A. M., & Wiens, D. A. (1992). Tsunami earthquakes: Slow thrust-faulting events in the accretionary wedge. Journal of Geophysical Research, 97(B11), 15321–15337.

    Google Scholar 

  • Pesicek, J. D., Thurber, C. H., Zhang, H., DeShon, H. R., Engdahl, E. R., & Widiyantoro, S. (2010). Teleseismic double-difference relocation of earthquakes along the Sumatra-Andaman subduction zone using a 3-D model. Journal of Geophysical Research, 115, B10303. https://doi.org/10.1029/2010jb007443.

    Article  Google Scholar 

  • Pflaker, G. L. (1997). Catastrophic tsunami generated by submarine slides and backarc thrusting during the 1992 earthquake on Eastern Flores Island, Indonesia. Geological Society of America (abstracts with program), 29(5), 57.

    Google Scholar 

  • Philibosian, B., Sieh, K., Avouac, J.-P., Natawidjaja, D. H., Chiang, H.-W., Wu, C.-C., et al. (2014). Rupture and variable coupling behavior of the Mentawai segment of the Sunda megathrust during the supercycle culmination of 1797 to 1833. Journal of Geophysical Research, 119, 7258–7287. https://doi.org/10.1002/2014jb011200.

    Article  Google Scholar 

  • Polet, J., & Kanamori, H. (2000). Shallow subduction zone earthquakes and their tsunamigenic potential. Geophysical Journal International, 142, 684–702. https://doi.org/10.1046/j.1365-246x.2000.00205.x.

    Article  Google Scholar 

  • Rahman, A., Sakurai, A., & Munadi, K. (2017). The analysis of the development of the Smong story on the 1907 and 2004 Indian Ocean tsunamis in strengthening the Simeulue island community’s resilience. International Journal of Disaster Risk Reduction, 29, 13–24. https://doi.org/10.1016/j.ijdrr.2017.07.015.

    Article  Google Scholar 

  • Reiche, M Th. (1863). Aanteekeningen omtrent aardbevingen en andere natuurverschijnselen, waargenomen in den Indischen Archipel, gedurende het laaste gedeelte van 1860 en het jaar 1861, verzameld. Natuurkundig tijdschrift voor Nederlandsch Indië, 25(1), 108–137.

    Google Scholar 

  • Reid, A. (2014). Two hitherto unknown Indonesian tsunamis of the seventeenth century: Probabilities and context. Journal of Southeast Asian Studies, 47(1), 88–108. https://doi.org/10.1017/s002246341500048x.

    Article  Google Scholar 

  • Sahal, A., Morin, J., Schindelé, F., & Lavigne, F. (2011). A catalog of tsunamis in La Réunion Island (France) from 1883 to 2010. Science of Tsunami Hazards, 30(3), 178–190.

    Google Scholar 

  • Saloor, N., & Okal, E. A. (2018). Extension of the energy-to-moment parameter Θ to intermediate and deep earthquakes. Physics of the Earth and Planetary Interiors, 274, 37–48.

    Google Scholar 

  • Satake, K. (1995). Linear and non-linear computations of the 1992 Nicaragua earthquake tsunami. Pure and Applied Geophysics, 144, 455–470.

    Google Scholar 

  • Schröder, E.E.W.G. (1917a). Nias. Ethnographische, geographische en historische aanteekeningen en studiën (vol 1), E.J. Brill, Leiden, p. 866.

  • Schröder, E.E.W.G. (1917b). Nias. Ethnographische, geographische en historische aanteekeningen en studiën: Platen en Kaarten (vol 2), Plate 128, Images 241 and 242, E.J. Brill, Leiden.

  • Shimozono, T., Cui, H., Pietrzak, J. D., Hermann, F., Okayasu, A., & Hooper, A. J. (2014). Short wave amplification and extreme runup by the 2011 Tohoku tsunami. Pure and Applied Geophysics, 171(12), 3217–3228. https://doi.org/10.1007/s00024-014-0803-1.

    Article  Google Scholar 

  • Sieh, K., Briggs, R., Meltzner, A. J., Natawidjaja, D., Hananto, N., & Suprihanto, I. (2006). The Simeulue saddle: Evidence for a barrier to rupture for both the 2004 and 2005 Sumatran megathrust failures. EOS, Transactions of the American Geophysical Union, vol 87, p. 52, U14A-01 (Abstract).

  • Singh, S. C., Carton, H., Chauhan, A. S., Androvandi, S., Davaille, A., Dyment, J., et al. (2011). Extremely thin crust in the Indian Ocean possibly resulting from plume-ridge interaction. Geophysics Journal International, 184(1), 29–42. https://doi.org/10.1111/j.1365-246x.2010.04823.x.

    Article  Google Scholar 

  • Singh, S. C., Carton, H., Tapponnier, P., Hananto, N. D., Chauhan, A. P. S., Haryoto, D., et al. (2008). Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region. Nature Geoscience, 1, 777–781.

    Google Scholar 

  • Solov’iev, S.L., & Go, Ch. (1974). Кaтaлoг цyнaми нa зaпaднoм пoбepeжьe тиxoгo oкeaнa (Catalogue of tsunamis on the western shores of the Pacific Ocean), Hayкa (Nauka), p. 310. (English translation by Sidney O. Wigen, Institute of Ocean Sciences, Department of Fisheries and Oceans, #5077, Sidney, Canada, 1984).

  • Staring, W. C. H. (1871). De binnen- en buitenlandsche maten, gewichten en munten van vroeger en tegenwoordig met hunne onderlinge vergelijkingen en herleidingen benevens vele andere, dagelijks te pas komende opgaven en berekeningen, 4th edition (1980 reprint). Arnhem: Gybers & Van Loon, p 196.

    Google Scholar 

  • Stein, S., & Okal, E. A. (2007). Ultra-long period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process. Bulletin of the Seismological Society of America, 97, S279–S295.

    Google Scholar 

  • Storchak, D. A., Giacomo, D. D., Bondár, I., Engdahl, E. R., Harris, J., Lee, W. H. K., et al. (2013). Public release of the ISC-GEM global instrumental earthquake catalogue (1900–2009). Seismological Research Letters, 84(5), 810–815.

    Google Scholar 

  • Stover, C. W., & Coffmann, J. L. (1993). Seismicity of the United States, 1568–1989 (Revised). United States Geological Survey Professional Paper, vol 1527, p. 418.

  • Syafwina, S. (2014). Recognizing indigenous knowledge for disaster management: Smong, early warning system from Simeulue Island, Aceh. Procedia Environmental Sciences, 20, 572–582.

    Google Scholar 

  • Sykes, L. (1971). Aftershock zones of great earthquakes seismicity gaps, and earthquake prediction for Alaska and the Aleutians. Journal of Geophysical Research, 76, 8021–8041.

    Google Scholar 

  • Synolakis, C. E., & Okal, E. A. (2005). 1992–2002: Perspective on a decade of post-tsunami surveys. In K. Satake (Ed.), Tsunamis: Case studies and recent developments. Advances in Natural and Technological Hazards (pp. 1–30). Berlin: Springer.

    Google Scholar 

  • Szirtes, S. (1912a). Registerierungen der besser ausgeprägten seismischen Störungen des Jahres 1907, Erganzung mit mikroseismischen Katalog, Veröffentlichungen des Zentral-bureaus der Internationalen Seismologischen Assoziation (Publications du bureau central de l’association internationale de séismologie), Strassburg, p. 111.

  • Szirtes, S. (1912b). Katalog der im Jahr 1907 registierten seismischen Störungen, Veröffentlichungen des Zentral-bureaus der Internationalen Seismologischen Assoziation (Publications du bureau central de l’association internationale de séismologie), Strassburg, p. 120.

  • Tang, G., Barton, P. J., McNeill, L. C., Henstock, T. J., Tilmann, F., Dean, S. M., et al. (2013). 3-D active source tomography around Simeulue Island offshore Sumatra: Thick crustal zone responsible for earthquake segment boundary. Geophysical Research Letters, 40, 48–53. https://doi.org/10.1029/2012gl054148.

    Article  Google Scholar 

  • Tanioka, Y., Ruff, L., & Satake, K. (1997). What controls the lateral variation of large earthquake occurrence along the Japan trench? Island Arc, 6, 261–266. https://doi.org/10.1111/j.1440-1738.1997.tb00176.x.

    Article  Google Scholar 

  • Tanioka, Y., & Satake, K. (1996). Fault parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami modelling. Geophysical Research Letters, 23, 1549–1552.

    Google Scholar 

  • Tolstoy, M., & Bohnenstiehl, D. R. (2005). Hydroacoustic constraints on the rupture duration, length, and speed of the great Sumatra-Andaman earthquake. Seismological Research Letters, 76, 419–425.

    Google Scholar 

  • Toppozada, T. R., & Real, C. R. (1981). Preparation of isoseismal maps and summaries of reported effects for pre-1900 California earthquakes. U.S. Geological Survey Open File Report, 1981–262, 7–11.

    Google Scholar 

  • Tsang, L. L. H., Meltzner, A. J., Philibosian, B., Hill, E. M., Freymueller, J. T., & Sieh, K. (2015). A 15-year slow-slip event on the Sunda megathrust offshore Sumatra. Geophysical Research Letters, 42, 6630–6638. https://doi.org/10.1002/2015gl064928.

    Article  Google Scholar 

  • Tsuji, Y., Matsutomi, H., Imamura, F., Takeo, M., Kawata, Y., Matsuyama, M., et al. (1995). Damage to coastal villages due to the 1992 Flores Island earthquake tsunami. Pure and Applied Geophysics, 144, 481–524.

    Google Scholar 

  • Turner, H. H., & Milne, J. (1908a). Circular No. 15 issued by the Seismological Committee. British Association for the Advancement of Science (Shide Circulars), Newport, pp. 105–152.

  • Turner, H. H., & Milne, J. (1908b). Circular No. 16 issued by the Seismological Committee. British Association for the Advancement of Science (Shide Circulars), Newport, pp. 153–186.

  • Turner, H. H., Milne, J., Boys, C. V., Darwin, G., Darwin, H., Glazerbrook, R. T., Gray, M. H., Gray, R. K., Judd, J. W., Knott, C. G., Meldola, R., Oldham, R. D., Perry, J., Plummer, W. E., Sampson, R. A., & Schuster, A. (1912). Seismic activity, 1904 to 1910 inclusive with map of origins, Seismological Investigations. In: 17th report of the Committee, British Association for the Advancement of Science (BAAS), pp. 70–87.

  • Verbeek, R. D. M. (1885). Krakatau, Landsrukkerij, Batavia, p. 624.  

  • Verbeek, R. D. M. (1912). Opgave van geschriften over geologie en mijnbouw van Nederlandsch Oost-Indië. Geologisch-Mijnbouwkundig Genootschap voor Nederland en Koloniën, Geologische serie, 1, 31–284.

    Google Scholar 

  • Visser, S. W. (1922). Inland and submarine epicentra of Sumatra and Java earthquakes, Verhandelingen 9 (complement to Verhandelingen 7) (pp. 1–14). Batavia: Koninklijk Magnetisch en Meteorologisch Observatorium te Batavia.

    Google Scholar 

  • Visser, S. W. (1931). Aardbevingen en getijden. Natuurkundig tijdschrift voor Nederlandsch Indië, 91(2), 153–166.

    Google Scholar 

  • Wang, X. (2009). User manual for Cornell Multi-grid COupled Tsunami model-COMCOT V1.7, edited, http://ceeserver.cee.cornell.edu/pll-group/doc/COMCOT_User_Manual_v1_7.pdf. (last accessed, 1 October 2018).

  • Wang, X., & Liu, P. L. F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147–154.

    Google Scholar 

  • Wendt, J., Oglesby, D. D., & Geist, E. L. (2009). Tsunamis and splay fault dynamics. Geophysical Research Letters, 36, L15303. https://doi.org/10.1029/2009gl038295.

    Article  Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. Eos Transactions AGU, 72, 441. https://doi.org/10.1029/90eo00319.

    Article  Google Scholar 

  • Whitlow, K. F. (2008). The 2004 and 1861 tsunami deposits on Simeulue Island, western Sumatra. Central Washington University, Master of Science in Geology thesis, p. 75.

  • Wysession, M. E., Okal, E. A., & Miller, K. L. (1991). Intraplate seismicity of the Pacific Basin, 1913–1988. Pure and Applied Geophysics, 135, 261–359.

    Google Scholar 

  • Yogaswara, H., & Yulianto, E. (2006). Pengetahuan local tenTang tsunami pada masyarakat Simeulue, Nanggroe Aceh Darussalam, Assessing and recognising community preparedness in natural disasters in Indonesia, LIPI–UNESCO/ISDR, p. 69.

Download references

Acknowledgements

This article has benefited from interactions with Alicia Schriker, Anthony Reid, Aron Meltzner, Christina Widiwijayanti, Euan Smith, Lauriane Chardot, Hiroo Kanamori, Luis Rivera, Priyamvada Nanjundiah, Qiang Qiu, Shengji Wei, and Susan Bilek. We are also grateful for the constructive reviews of two anonymous reviewers and the comments of Guest Editor Yuichiro Tanioka. We would like to thank H.P. Shukla, Isabelle Garnier-Loussaut, Susanne Sargeant, Vineet Gahalaut, and Yann Ferret for assistance rendered in our efforts to locate additional seismograms and station bulletins for the earthquake, and maregrams. Hiroo Kanamori provided Japanese seismograms from Hongo and Osaka. Dominico Di Giacomo provided a customized grid-search relocation. Robert Engdahl provided relocated seismicity from Engdahl et al. (2007), and Alexandre Sahal provided French newspaper reports from La Réunion. Çağıl Karakaş, Iwan Hermawan, Koen van Noten, and Mari Hamahashi assisted with, or verified selected translations. Aron Meltzner provided field notes and photos from the 2005–2007 field season. Isabelle Autissier and Gracieuse Delépine provided insight on the conditions at Saint Paul and Amsterdam Islands. We also acknowledge the services rendered by the staff at libraries in The Hague (Koninklijk Bibliotheek and Nationaal Archief), Berkeley (National Information Service for Earthquake Engineering, University of California, Berkeley), Canberra (National Library of Australia), Jakarta (UNESCO), London (The British Library), Los Angeles (University of California, Los Angeles), Paris (Bibliothèque Nationale de France), and Singapore (National Library of Singapore). E.O. was partially supported at Northwestern University by the National Science Foundation, under subcontract from the University of Pittsburgh’s Hazards SEES Grant Number OCE-1331463. This paper is a contribution to IGCP Project 639 Sea-Level Changes from Minutes to Millennia. This research is partly supported by the National Research Foundation Singapore and the Singapore Ministry of Education under the Research Centres of Excellence initiative. This work comprises Earth Observatory of Singapore contribution number 218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey Servito Martin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martin, S.S., Li, L., Okal, E.A. et al. Reassessment of the 1907 Sumatra “Tsunami Earthquake” Based on Macroseismic, Seismological, and Tsunami Observations, and Modeling. Pure Appl. Geophys. 176, 2831–2868 (2019). https://doi.org/10.1007/s00024-019-02134-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02134-2

Keywords

  • Tsunami
  • earthquake
  • Simeulue
  • Nias
  • Sumatra
  • Indonesia
  • Indian Ocean
  • 1907