Skip to main content
Log in

Testing Fault Models in Intraplate Settings: A Potential for Challenging the Seismic Hazard Assessment Inputs and Hypothesis?

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Active faults in intraplate settings, exhibiting slow deformation, rarely expose clear morphotectonic expressions. In many cases, their characterization relies only on rare neotectonic slip rates, often integrated over the Holocene, Quaternary or Plio-Quaternary. In addition, the strain accumulated along these tectonic structures and therefore their locking depth and associated slip deficit usually remains out of reach of geodetic measurements. Finally, the micro-seismicity located in the vicinity of most of these structures usually fails in delineating clear active fault segments geometry. The seismogenic potential therefore remains tainted with large uncertainties. It is one of the main reasons why very little attention has been paid to testing how French seismicity compares to the predictions of tectonic models. In this work, focused on South-Eastern France, we confront the potentially active faults database of the French metropolitan territory with a recently published catalog of historical and instrumental seismicity. Seismicity rates are corrected for completeness biases and are then compared to the predictions of several endmember tectonic models. The rates of earthquakes predicted by the tectonic models appear six to eighteen times higher than the historical and instrumental observations. Such a difference could be explained by an overestimation of the seismogenic potential of the faults or by different average seismicity rates at historical and longer-term timescales. This variation, if genuine, could be implied by spatiotemporally clustered seismicity due to tectonic or non-tectonic modulations suggesting non-poissonian behavior of the largest earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AIST (2012). National Institute of Advanced Industrial Science and Technology. Active Fault Database of Japan, February 28, 2012 version. Research Information Database DB095, National Institute of Advanced Industrial Science and Technology. https://gbank.gsj.jp/activefault/index_e_gmap.html. Accessed 12 Feb 2019.

  • Avouac, J. P. (2015). From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annual Review of Earth and Planetary Sciences,43, 233–271. https://doi.org/10.1146/annurev-earth-060614-105302.

    Article  Google Scholar 

  • Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., et al. (2008). The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics,453(1–4), 20–43. https://doi.org/10.1016/j.tecto.2007.04.014.

    Article  Google Scholar 

  • Beaumont, D., Manchuel, K., Traversa, P., Durouchoux, C., Nayman, E., & Ameri, G. (2018). Intensity predictive attenuation models calibrated in Mw for metropolitan France. Bulletin of Earthquake Engineering,146(6), 2285–2310. https://doi.org/10.1007/s10518-018-0344-6.

    Article  Google Scholar 

  • Berge-Thierry, C., Hollender, F., Guyonnet-Benaize, C., Baumont, D., Ameri, G., & Bollinger, L. (2017). Challenges ahead for nuclear facility site-specific seismic hazard assessment in France: the alternative energies and the Atomic Energy Commission (CEA) Vision. Pure and Applied Geophysics,174, 3609. https://doi.org/10.1007/s00024-017-1582-2.

    Article  Google Scholar 

  • Bonté, D., Guillou-Frottier, L., Garibaldi, C., Bourgine, B., Lopez, S., Bouchot, V., et al. (2010). Subsurface temperature maps in French sedimentary basins: new data compilation and interpolation. Bulletin de la Société Géologique de France,181(4), 377–390. https://doi.org/10.2113/gssgfbull.181.4.377.

    Article  Google Scholar 

  • BRGM, EDF, IRSN (2014). Base de données nationale de la sismicité historique SisFrance.

  • BRGM, Service géologique national, Chantraine, J., Autran, A., Cavelier, C., & Clozier, L. (1996). Carte géologique de la France à l’échelle du millionième. Bureau de recherches géologiques et minières.

  • Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip, earth planet. Science Letters,495, 112–134. https://doi.org/10.1016/j.epsl.2018.04.062.

    Article  Google Scholar 

  • Camelbeeck, T., Vanneste, K., Alexandre, P., Verbeeck, K., Petermans, T., Rosset, P., et al. (2007). Relevance of active faulting and seismicity studies to assessments of long-term earthquake activity and maximum magnitude in intraplate northwest Europe, between the Lower Rhine Embayment and the North Sea. In S. Stein & S. Mazzotti (Eds.), Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues (pp. 193–224). Boulder: Geological Society of America.

    Google Scholar 

  • Caporali, A., Braitenberg, C., Montone, P., Rossi, G., Valensise, G., Viganò, A., et al. (2018). A quantitative approach to the loading rate of seismogenic sources in Italy. Geophysical Journal International,213(3), 2096–2111. https://doi.org/10.1093/gji/ggy112.

    Article  Google Scholar 

  • Cara, M., Cansi, Y., Schlupp, A., et al. (2015). Si-Hex: a new catalogue of instrumental seismicity for metropolitan France. Bulletin de la Société Géologique de France,186, 3–19. https://doi.org/10.2113/qssqfbull.186.1.3.

    Article  Google Scholar 

  • Cara, M., Denieul, M., Sèbe, O., Delouis, B., Cansi, Y., & Schlupp, A. (2017). Magnitude M in metropolitan France. Journal of Seismology,21(3), 551–565. https://doi.org/10.1007/s10950-016-9617-1.

    Article  Google Scholar 

  • Carafa, M. M., Valensise, G., & Bird, P. (2017). Assessing the seismic coupling of shallow continental faults and its impact on seismic hazard estimates: a case-study from Italy. Geophysical Journal International,209(1), 32–47. https://doi.org/10.1093/gji/ggx002.

    Article  Google Scholar 

  • Chardon, D., Hermitte, D., Nguyen, F., & Bellier, O. (2005). First paleoseismological constraints on the strongest earthquake in France (Provence) in the twentieth century. Geology,33(11), 901–904. https://doi.org/10.1130/G21713.1.

    Article  Google Scholar 

  • Chartier, T., Scotti, O., Clément, C., Jomard, H., & Baize, S. (2017a). Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities–Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France. Natural Hazards and Earth System Sciences,17(9), 1585–1593. https://doi.org/10.5194/nhess-17-1573-2017.

    Article  Google Scholar 

  • Chartier, T., Scotti, O., Lyon-Caen, H., & Boiselet, A. (2017b). Methodology for earthquake rupture rate estimates of fault networks: example for the western Corinth rift, Greece. Natural Hazards and Earth System Sciences,17(10), 1857–1869. https://doi.org/10.5194/nhess-17-1857-2017.

    Article  Google Scholar 

  • Chéry, M., Genti, M., & Vernant, P. (2016). Ice cap melting and low-viscosity crustal root explain the narrow geodetic uplift of the Western Alps. Geophysical Research Letters. https://doi.org/10.1002/2016gl067821.

    Article  Google Scholar 

  • Craig, T. J., Calais, E., Fleitout, L., Bollinger, L., & Scotti, O. (2016). Evidence for the release of long-term tectonic strain stored in continental interiors through intraplate earthquakes. Geophysical Research Letters,43(13), 6826–6836. https://doi.org/10.1002/2016GL069359.

    Article  Google Scholar 

  • Denieul, M., Sèbe, O., Cara, M., & Cansi, Y. (2015). Mw estimation from crustal coda waves recorded on analog seismograms. Bulletin of the Seismological Society of America,105(2A), 831–849. https://doi.org/10.1785/0120140226.

    Article  Google Scholar 

  • DISS Working Group (2018), Database of Individual Seismogenic Sources (DISS), Version 3.2.1: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, Istituto Nazionale di Geofisica e Vulcanologia; https://doi.org/10.6092/ingv.it-diss3.2.1.

  • Field, E.H., Biasi, G.P., Bird, P., Dawson, T.E., Felzer, K.R., Jackson, D.D., Johnson, K.M., Jordan, T.H., Madden, C., Michael, A.J., Milner, K.R., Page, M.T., Parsons, T., Powers, P.M., Shaw, B.E., Thatcher, W.R., Weldon, R.J., II, and Zeng, Y., (2013). Uniform California earthquake rupture forecast, version 3 (UCERF3)—The time-independent model: U.S. Geological Survey Open-File Report 2013–1165, 97 p., California Geological Survey Special Report 228, and Southern California Earthquake Center Publication 1792, http://pubs.usgs.gov/of/2013/1165/.

  • Finocchio, D., Barba, S., & Basili, R. (2016). Slip rate depth distribution for active faults in Central Italy using numerical models. Tectonophysics,687, 232–244. https://doi.org/10.1016/j.tecto.2016.07.031.

    Article  Google Scholar 

  • Gualandi, A., Nichele, C., Serpelloni, E., Chiaraluce, L., Anderlini, L., Latorre, D., et al. (2017). Aseismic deformation associated with an earthquake swarm in the northern Apennines (Italy). Geophysical Research Letters,44(15), 7706–7714.

    Article  Google Scholar 

  • Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth,84(B5), 2348–2350. https://doi.org/10.1029/JB084iB05p02348.

    Article  Google Scholar 

  • Harris, R. A. (2017). Large earthquakes and creeping faults. Reviews of Geophysics,55, 169–198. https://doi.org/10.1002/2016RG000539.

    Article  Google Scholar 

  • Jomard, H., Cushing, E. M., Palumbo, L., Baize, S., David, C., & Chartier, T. (2017). Transposing an active fault database into a seismic hazard fault model for nuclear facilities–Part 1: Building a database of potentially active faults (BDFA) for metropolitan France. Natural Hazards and Earth System Sciences,17(9), 1573–1584. https://doi.org/10.5194/nhess-17-1573-2017.

    Article  Google Scholar 

  • King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America,84(3), 935–953.

    Google Scholar 

  • Langridge, R. M., Ries, W. F., Litchfield, N. J., Villamor, P., VanDissen, R. J., Rattenbury, M. S., et al. (2016). The New Zealand active faults database NZAFD250. New Zealand Journal of Geology and Geophysics,59(1), 86–96.

    Article  Google Scholar 

  • Leonard, M. (2010). Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America,100(5A), 1971–1988. https://doi.org/10.1785/0120090189.

    Article  Google Scholar 

  • Leonard, M. (2014). Self-consistent earthquake fault-scaling relations: update and extension to stable continental strike-slip faults. Bulletin of the Seismological Society of America,104(6), 2953–2965. https://doi.org/10.1785/0120140087.

    Article  Google Scholar 

  • Manchuel, K., Traversa, P., Baumont, D., Cara, M., Nayman, E., & Durouchoux, C. (2018). The French seismic CATalogue (FCAT-17). Bulletin of Earthquake Engineering,16(6), 2227–2251. https://doi.org/10.1007/s10518-017-0236-1.

    Article  Google Scholar 

  • Marin, S., Avouac, J. P., Nicolas, M., & Schlupp, A. (2004). A probabilistic approach to seismic hazard in metropolitan France. Bulletin of the Seismological Society of America,94(6), 2137–2163. https://doi.org/10.1785/0120030232.

    Article  Google Scholar 

  • Mey, J., Scherler, D., Wickert, A. D., Egholm, D. L., Tesauro, M., Schildgen, T. F., et al. (2016). Glacial isostatic uplift of the European Alps. Nature Communications,7(13382), 1–8. https://doi.org/10.1038/ncomms13382.

    Article  Google Scholar 

  • Neves, M. C., Cabral, J., Luttrell, K., Figueiredo, P., Rockwell, T., & Sandwell, D. (2015). The effect of sea level changes on fault reactivation potential in Portugal. Tectonophysics,658, 206–220. https://doi.org/10.1016/j.tecto.2015.07.023.

    Article  Google Scholar 

  • Nocquet, J. M. (2012). Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics,579, 220–242. https://doi.org/10.1016/j.tecto.2012.03.037.

    Article  Google Scholar 

  • RFS 2001-01. (2001). French Safety Rule, published by the French Nuclear Safety Authority. https://www.asn.fr/Reglementer/Regles-fondamentales-de-surete/RFS-relatives-aux-REP/RFS-2001-1-RFS-I.1.c.-du-31-05-2001. Accessed 12 Feb 2019.

  • Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature,437(7058), 539. https://doi.org/10.1038/nature04094.

    Article  Google Scholar 

  • Stein, R. S., Barka, A. A., & Dieterich, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International,128(3), 594–604. https://doi.org/10.1111/j.1365-246X.1997.tb05321.x.

    Article  Google Scholar 

  • Stein, S., Geller, R. J., & Liu, M. (2012). Why earthquake hazard maps often fail and what to do about it. Tectonophysics,562, 1–25.

    Article  Google Scholar 

  • Stocchi, P., Spada, G., & Cianetti, S. (2005). Isostatic rebound following the Alpine deglaciation: impact on the sea level variations and vertical movements in the Mediterranean region. Geophysical Journal International,162, 137–147. https://doi.org/10.1111/j.1365-246X.2005.02653.x.

    Article  Google Scholar 

  • Traversa, P., Baumont, D., Manchuel, K., Nayman, E., & Durouchoux, C. (2018). Exploration tree approach to estimate historical earthquakes Mw and depth, test cases from the French past seismicity. Bulletin of Earthquake Engineering,16(6), 2169–2193. https://doi.org/10.1007/s10518-017-0178-7.

    Article  Google Scholar 

  • Vanneste, K., Camelbeeck, T., & Verbeeck, K. (2013). A model of composite seismic sources for the Lower Rhine Graben, Northwest Europe. Bulletin of the Seismological Society of America,103(2A), 984–1007. https://doi.org/10.1785/0120120037.

    Article  Google Scholar 

  • Vernant, P., Hivert, F., Chery, J., Steer, P., Cattin, R., & Rigo, A. (2013). Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges. Geology,41(4), 467–470. https://doi.org/10.1130/G33942.1.

    Article  Google Scholar 

  • Walpersdorf, A., Pinget, L., Vernant, P., Sue, C., Deprez, A., & the RENAG team. (2018). Does long-term GPS in the Western Alps Finally confirm earthquake mechanisms? Tectonics.. https://doi.org/10.1029/2018tc005054.

    Article  Google Scholar 

  • Walpersdorf, A., Sue, C., Baize, S., Cotte, N., Bascou, P., Beauval, C., et al. (2015). Coherence between geodetic and seismic deformation in a context of slow tectonic activity (SW Alps, France). Journal of Geodynamics,85, 58–65. https://doi.org/10.1016/j.jog.2015.02.001.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Myrtille Kuperminc who tested early fault model endmembers. This work is part of work package 1 “faults and tectonics” of the Sigma2 Project. This research was funded by CEA. We acknowledge the detailed review provided by Petr Spacek and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaury Vallage.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallage, A., Bollinger, L. Testing Fault Models in Intraplate Settings: A Potential for Challenging the Seismic Hazard Assessment Inputs and Hypothesis?. Pure Appl. Geophys. 177, 1879–1889 (2020). https://doi.org/10.1007/s00024-019-02129-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02129-z

Keywords

Navigation