Advertisement

Testing Fault Models in Intraplate Settings: A Potential for Challenging the Seismic Hazard Assessment Inputs and Hypothesis?

  • Amaury VallageEmail author
  • L. Bollinger
Article

Abstract

Active faults in intraplate settings, exhibiting slow deformation, rarely expose clear morphotectonic expressions. In many cases, their characterization relies only on rare neotectonic slip rates, often integrated over the Holocene, Quaternary or Plio-Quaternary. In addition, the strain accumulated along these tectonic structures and therefore their locking depth and associated slip deficit usually remains out of reach of geodetic measurements. Finally, the micro-seismicity located in the vicinity of most of these structures usually fails in delineating clear active fault segments geometry. The seismogenic potential therefore remains tainted with large uncertainties. It is one of the main reasons why very little attention has been paid to testing how French seismicity compares to the predictions of tectonic models. In this work, focused on South-Eastern France, we confront the potentially active faults database of the French metropolitan territory with a recently published catalog of historical and instrumental seismicity. Seismicity rates are corrected for completeness biases and are then compared to the predictions of several endmember tectonic models. The rates of earthquakes predicted by the tectonic models appear six to eighteen times higher than the historical and instrumental observations. Such a difference could be explained by an overestimation of the seismogenic potential of the faults or by different average seismicity rates at historical and longer-term timescales. This variation, if genuine, could be implied by spatiotemporally clustered seismicity due to tectonic or non-tectonic modulations suggesting non-poissonian behavior of the largest earthquakes.

Keywords

Active fault seismogenic potential stable continental region seismic hazard testing 

Notes

Acknowledgements

We thank Myrtille Kuperminc who tested early fault model endmembers. This work is part of work package 1 “faults and tectonics” of the Sigma2 Project. This research was funded by CEA. We acknowledge the detailed review provided by Petr Spacek and an anonymous reviewer.

Supplementary material

24_2019_2129_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 35 kb)

References

  1. AIST (2012). National Institute of Advanced Industrial Science and Technology. Active Fault Database of Japan, February 28, 2012 version. Research Information Database DB095, National Institute of Advanced Industrial Science and Technology. https://gbank.gsj.jp/activefault/index_e_gmap.html. Accessed 12 Feb 2019.
  2. Avouac, J. P. (2015). From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annual Review of Earth and Planetary Sciences, 43, 233–271.  https://doi.org/10.1146/annurev-earth-060614-105302.CrossRefGoogle Scholar
  3. Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano, S., et al. (2008). The Database of Individual Seismogenic Sources (DISS), version 3: summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics, 453(1–4), 20–43.  https://doi.org/10.1016/j.tecto.2007.04.014.CrossRefGoogle Scholar
  4. Beaumont, D., Manchuel, K., Traversa, P., Durouchoux, C., Nayman, E., & Ameri, G. (2018). Intensity predictive attenuation models calibrated in Mw for metropolitan France. Bulletin of Earthquake Engineering, 146(6), 2285–2310.  https://doi.org/10.1007/s10518-018-0344-6.CrossRefGoogle Scholar
  5. Berge-Thierry, C., Hollender, F., Guyonnet-Benaize, C., Baumont, D., Ameri, G., & Bollinger, L. (2017). Challenges ahead for nuclear facility site-specific seismic hazard assessment in France: the alternative energies and the Atomic Energy Commission (CEA) Vision. Pure and Applied Geophysics, 174, 3609.  https://doi.org/10.1007/s00024-017-1582-2.CrossRefGoogle Scholar
  6. Bonté, D., Guillou-Frottier, L., Garibaldi, C., Bourgine, B., Lopez, S., Bouchot, V., et al. (2010). Subsurface temperature maps in French sedimentary basins: new data compilation and interpolation. Bulletin de la Société Géologique de France, 181(4), 377–390.  https://doi.org/10.2113/gssgfbull.181.4.377.CrossRefGoogle Scholar
  7. BRGM, EDF, IRSN (2014). Base de données nationale de la sismicité historique SisFrance.Google Scholar
  8. BRGM, Service géologique national, Chantraine, J., Autran, A., Cavelier, C., & Clozier, L. (1996). Carte géologique de la France à l’échelle du millionième. Bureau de recherches géologiques et minières.Google Scholar
  9. Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip, earth planet. Science Letters, 495, 112–134.  https://doi.org/10.1016/j.epsl.2018.04.062.Google Scholar
  10. Camelbeeck, T., Vanneste, K., Alexandre, P., Verbeeck, K., Petermans, T., Rosset, P., et al. (2007). Relevance of active faulting and seismicity studies to assessments of long-term earthquake activity and maximum magnitude in intraplate northwest Europe, between the Lower Rhine Embayment and the North Sea. In S. Stein & S. Mazzotti (Eds.), Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues (pp. 193–224). Boulder: Geological Society of America.CrossRefGoogle Scholar
  11. Caporali, A., Braitenberg, C., Montone, P., Rossi, G., Valensise, G., Viganò, A., et al. (2018). A quantitative approach to the loading rate of seismogenic sources in Italy. Geophysical Journal International, 213(3), 2096–2111.  https://doi.org/10.1093/gji/ggy112.CrossRefGoogle Scholar
  12. Cara, M., Cansi, Y., Schlupp, A., et al. (2015). Si-Hex: a new catalogue of instrumental seismicity for metropolitan France. Bulletin de la Société Géologique de France, 186, 3–19.  https://doi.org/10.2113/qssqfbull.186.1.3.CrossRefGoogle Scholar
  13. Cara, M., Denieul, M., Sèbe, O., Delouis, B., Cansi, Y., & Schlupp, A. (2017). Magnitude M in metropolitan France. Journal of Seismology, 21(3), 551–565.  https://doi.org/10.1007/s10950-016-9617-1.CrossRefGoogle Scholar
  14. Carafa, M. M., Valensise, G., & Bird, P. (2017). Assessing the seismic coupling of shallow continental faults and its impact on seismic hazard estimates: a case-study from Italy. Geophysical Journal International, 209(1), 32–47.  https://doi.org/10.1093/gji/ggx002.Google Scholar
  15. Chardon, D., Hermitte, D., Nguyen, F., & Bellier, O. (2005). First paleoseismological constraints on the strongest earthquake in France (Provence) in the twentieth century. Geology, 33(11), 901–904.  https://doi.org/10.1130/G21713.1.CrossRefGoogle Scholar
  16. Chartier, T., Scotti, O., Clément, C., Jomard, H., & Baize, S. (2017a). Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities–Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France. Natural Hazards and Earth System Sciences, 17(9), 1585–1593.  https://doi.org/10.5194/nhess-17-1573-2017.CrossRefGoogle Scholar
  17. Chartier, T., Scotti, O., Lyon-Caen, H., & Boiselet, A. (2017b). Methodology for earthquake rupture rate estimates of fault networks: example for the western Corinth rift, Greece. Natural Hazards and Earth System Sciences, 17(10), 1857–1869.  https://doi.org/10.5194/nhess-17-1857-2017.CrossRefGoogle Scholar
  18. Chéry, M., Genti, M., & Vernant, P. (2016). Ice cap melting and low-viscosity crustal root explain the narrow geodetic uplift of the Western Alps. Geophysical Research Letters.  https://doi.org/10.1002/2016gl067821.Google Scholar
  19. Craig, T. J., Calais, E., Fleitout, L., Bollinger, L., & Scotti, O. (2016). Evidence for the release of long-term tectonic strain stored in continental interiors through intraplate earthquakes. Geophysical Research Letters, 43(13), 6826–6836.  https://doi.org/10.1002/2016GL069359.CrossRefGoogle Scholar
  20. Denieul, M., Sèbe, O., Cara, M., & Cansi, Y. (2015). Mw estimation from crustal coda waves recorded on analog seismograms. Bulletin of the Seismological Society of America, 105(2A), 831–849.  https://doi.org/10.1785/0120140226.CrossRefGoogle Scholar
  21. DISS Working Group (2018), Database of Individual Seismogenic Sources (DISS), Version 3.2.1: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, Istituto Nazionale di Geofisica e Vulcanologia;  https://doi.org/10.6092/ingv.it-diss3.2.1.
  22. Field, E.H., Biasi, G.P., Bird, P., Dawson, T.E., Felzer, K.R., Jackson, D.D., Johnson, K.M., Jordan, T.H., Madden, C., Michael, A.J., Milner, K.R., Page, M.T., Parsons, T., Powers, P.M., Shaw, B.E., Thatcher, W.R., Weldon, R.J., II, and Zeng, Y., (2013). Uniform California earthquake rupture forecast, version 3 (UCERF3)—The time-independent model: U.S. Geological Survey Open-File Report 2013–1165, 97 p., California Geological Survey Special Report 228, and Southern California Earthquake Center Publication 1792, http://pubs.usgs.gov/of/2013/1165/.
  23. Finocchio, D., Barba, S., & Basili, R. (2016). Slip rate depth distribution for active faults in Central Italy using numerical models. Tectonophysics, 687, 232–244.  https://doi.org/10.1016/j.tecto.2016.07.031.CrossRefGoogle Scholar
  24. Gualandi, A., Nichele, C., Serpelloni, E., Chiaraluce, L., Anderlini, L., Latorre, D., et al. (2017). Aseismic deformation associated with an earthquake swarm in the northern Apennines (Italy). Geophysical Research Letters, 44(15), 7706–7714.CrossRefGoogle Scholar
  25. Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348–2350.  https://doi.org/10.1029/JB084iB05p02348.CrossRefGoogle Scholar
  26. Harris, R. A. (2017). Large earthquakes and creeping faults. Reviews of Geophysics, 55, 169–198.  https://doi.org/10.1002/2016RG000539.CrossRefGoogle Scholar
  27. Jomard, H., Cushing, E. M., Palumbo, L., Baize, S., David, C., & Chartier, T. (2017). Transposing an active fault database into a seismic hazard fault model for nuclear facilities–Part 1: Building a database of potentially active faults (BDFA) for metropolitan France. Natural Hazards and Earth System Sciences, 17(9), 1573–1584.  https://doi.org/10.5194/nhess-17-1573-2017.CrossRefGoogle Scholar
  28. King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935–953.Google Scholar
  29. Langridge, R. M., Ries, W. F., Litchfield, N. J., Villamor, P., VanDissen, R. J., Rattenbury, M. S., et al. (2016). The New Zealand active faults database NZAFD250. New Zealand Journal of Geology and Geophysics, 59(1), 86–96.CrossRefGoogle Scholar
  30. Leonard, M. (2010). Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America, 100(5A), 1971–1988.  https://doi.org/10.1785/0120090189.CrossRefGoogle Scholar
  31. Leonard, M. (2014). Self-consistent earthquake fault-scaling relations: update and extension to stable continental strike-slip faults. Bulletin of the Seismological Society of America, 104(6), 2953–2965.  https://doi.org/10.1785/0120140087.CrossRefGoogle Scholar
  32. Manchuel, K., Traversa, P., Baumont, D., Cara, M., Nayman, E., & Durouchoux, C. (2018). The French seismic CATalogue (FCAT-17). Bulletin of Earthquake Engineering, 16(6), 2227–2251.  https://doi.org/10.1007/s10518-017-0236-1.CrossRefGoogle Scholar
  33. Marin, S., Avouac, J. P., Nicolas, M., & Schlupp, A. (2004). A probabilistic approach to seismic hazard in metropolitan France. Bulletin of the Seismological Society of America, 94(6), 2137–2163.  https://doi.org/10.1785/0120030232.CrossRefGoogle Scholar
  34. Mey, J., Scherler, D., Wickert, A. D., Egholm, D. L., Tesauro, M., Schildgen, T. F., et al. (2016). Glacial isostatic uplift of the European Alps. Nature Communications, 7(13382), 1–8.  https://doi.org/10.1038/ncomms13382.Google Scholar
  35. Neves, M. C., Cabral, J., Luttrell, K., Figueiredo, P., Rockwell, T., & Sandwell, D. (2015). The effect of sea level changes on fault reactivation potential in Portugal. Tectonophysics, 658, 206–220.  https://doi.org/10.1016/j.tecto.2015.07.023.CrossRefGoogle Scholar
  36. Nocquet, J. M. (2012). Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics, 579, 220–242.  https://doi.org/10.1016/j.tecto.2012.03.037.CrossRefGoogle Scholar
  37. RFS 2001-01. (2001). French Safety Rule, published by the French Nuclear Safety Authority. https://www.asn.fr/Reglementer/Regles-fondamentales-de-surete/RFS-relatives-aux-REP/RFS-2001-1-RFS-I.1.c.-du-31-05-2001. Accessed 12 Feb 2019.
  38. Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437(7058), 539.  https://doi.org/10.1038/nature04094.CrossRefGoogle Scholar
  39. Stein, R. S., Barka, A. A., & Dieterich, J. H. (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3), 594–604.  https://doi.org/10.1111/j.1365-246X.1997.tb05321.x.CrossRefGoogle Scholar
  40. Stein, S., Geller, R. J., & Liu, M. (2012). Why earthquake hazard maps often fail and what to do about it. Tectonophysics, 562, 1–25.CrossRefGoogle Scholar
  41. Stocchi, P., Spada, G., & Cianetti, S. (2005). Isostatic rebound following the Alpine deglaciation: impact on the sea level variations and vertical movements in the Mediterranean region. Geophysical Journal International, 162, 137–147.  https://doi.org/10.1111/j.1365-246X.2005.02653.x.CrossRefGoogle Scholar
  42. Traversa, P., Baumont, D., Manchuel, K., Nayman, E., & Durouchoux, C. (2018). Exploration tree approach to estimate historical earthquakes Mw and depth, test cases from the French past seismicity. Bulletin of Earthquake Engineering, 16(6), 2169–2193.  https://doi.org/10.1007/s10518-017-0178-7.CrossRefGoogle Scholar
  43. Vanneste, K., Camelbeeck, T., & Verbeeck, K. (2013). A model of composite seismic sources for the Lower Rhine Graben, Northwest Europe. Bulletin of the Seismological Society of America, 103(2A), 984–1007.  https://doi.org/10.1785/0120120037.CrossRefGoogle Scholar
  44. Vernant, P., Hivert, F., Chery, J., Steer, P., Cattin, R., & Rigo, A. (2013). Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges. Geology, 41(4), 467–470.  https://doi.org/10.1130/G33942.1.CrossRefGoogle Scholar
  45. Walpersdorf, A., Pinget, L., Vernant, P., Sue, C., Deprez, A., & the RENAG team. (2018). Does long-term GPS in the Western Alps Finally confirm earthquake mechanisms? Tectonics..  https://doi.org/10.1029/2018tc005054.Google Scholar
  46. Walpersdorf, A., Sue, C., Baize, S., Cotte, N., Bascou, P., Beauval, C., et al. (2015). Coherence between geodetic and seismic deformation in a context of slow tectonic activity (SW Alps, France). Journal of Geodynamics, 85, 58–65.  https://doi.org/10.1016/j.jog.2015.02.001.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CEA, DAM, DIFArpajonFrance

Personalised recommendations