Skip to main content
Log in

Magnetotellurics Study to Identify Subsurface Resistivity Structure in the Eastern Part of Kachchh (Little Rann Area) of Gujarat, India

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A magnetotelluric (MT) survey has been conducted in the eastern part of the Kachchh region of Gujarat State (crossing Little Rann) starting from Adesar village in the north to Enjar village in the south, where limited geophysical data is available. The profile has been acquired in the N–S direction having a total length of 52 km with the interstation spacing of 3–4 km. From two-dimensional (2D) inversion of the MT data, four conductive zones are identified. The analysis reveals that the depth of the basement varies from 1.2 km (in the south) to 1.8 km (in the north). The first conductive zone is found at a distance of ~ 3 km in the south of Adesar and is identified at the location of the Kanmer fault [KF; the eastern extension of South Wagad fault (SWF)] and might be the KF. The second conductive zone is found at a distance of ~ 42 km in the south of Adesar and ~ 13 km north of Enjar village and is located at the contact zone of Kachchh and Saurashtra peninsula at the location of the North Kathiawar fault (NKF). It is inferred as the NKF. The third conductive zone (at a distance of ~ 27 km in the south of Adesar) is found between the first and second conductor. This is interpreted as a step fault, formed during the rifting process of Kachchh. The lower crust (below 20 km) is found conductive (~ 120 Ω m) and might indicate the presence of fluid-filled mafic/ultramafic rocks in the lower crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alabi, A. O., Camfield, P. A., & Gough, D. I. (1975). The North America central plains conductivity anomaly. Geophysical Journal International, 43, 815–833.

    Article  Google Scholar 

  • Arora, B. R., Rawat, G., & Singh, A. K. (2002). Mid-crustal conductor below the Kutch rift and its seismogenic relevance to the 2001 Bhuj earthquake (pp. 22–24). New Delhi: DCS-DST News Govt. of India.

    Google Scholar 

  • Bahr, K. (1988). Interpretation of the magnetotelluric impedance tensor: regional induction and local distortion. Journal of Geophysics, 62, 119–127.

    Google Scholar 

  • Bahr, K. (1991). Geological noise in magnetotelluric data: A classification of distortion types. Physics of the Earth and Planetary Interiors, 66(1–2), 24–38.

    Article  Google Scholar 

  • Becken, M., & Burkhardt, H. (2004). An ellipticity criterion in magnetotelluric tensor analysis. Geophysical Journal International, 159(1), 69–82.

    Article  Google Scholar 

  • Biswas, S. K. (1987). Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, 135(4), 307–327.

    Article  Google Scholar 

  • Biswas, S. K., Bhasin, A. L., & Ram, J. (1994). Classification of sedimentary basins of India in the framework of plate tectonics. Proceedings of the Second Symposium on the Petroliferous basins of India, KDMIPE, Dehradun, vol. 1, pp. 1–42.

  • Biswas, S. K. (2005). A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes. Current Science, 88(10), 1592–1600.

    Google Scholar 

  • Biswas, S. K. (2016). Tectonic framework, structure and tectonic evolution of Kutch Basin, Western India. Special Publications Geological Society of India, 6, 129–150. https://doi.org/10.17491/cgsi/2016/105417.

    Google Scholar 

  • Brasse, H., Lezaeta, P., Rath, V., Schwalenberg, K., Soyer, W., & Haak, V. (2002). The Bolivian Altiplano conductivity anomaly. Journal of Geophysical Research, 107(B5), 4–10. https://doi.org/10.1029/2001jb000391.

    Article  Google Scholar 

  • Chandrasekhar, D. V., & Mishra, D. C. (2002). Some geodynamic aspects of Kachchh basin and seismicity: An insight from gravity studies. Current Science, 83(4), 492–498.

    Google Scholar 

  • Chopra, S., Chang, T. M., Saikia, S., Yadav, R. B. S., Choudhury, P., & Roy, K. S. (2014). Crustal structure of the Gujarat region, India: New constraints from the analysis of teleseismic receiver functions. Journal of Asian Earth Science, 96, 237–254.

    Article  Google Scholar 

  • Cox, K. G. (1993). Continental magmatic underplating. Philosophical Transactions of the Royal Society of London, 342(1663), 155–166.

    Article  Google Scholar 

  • Duba, A. G., & Shankland, T. J. (1982). Free carbon and electrical conductivity in the Earth’s mantle. Geophysical Research Letters, 9, 1271–1274.

    Article  Google Scholar 

  • Ferry, J. M. (1991). Dehydration and decarbonation reactions as a record of fluid infiltration. Reviews in Mineralogy and Geochemistry, 26(1), 351–393.

    Google Scholar 

  • Frost, B. R., & Bucher, K. (1994). Is water responsible for geophysical anomalies in the deep continental crust? A petrological perspective. Tectonophysics, 231(4), 293–309.

    Article  Google Scholar 

  • Frost, B. R., Fyfe, W. S., Tazaki, K., & Chan, T. (1989). Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust. Nature, 340, 134–136.

    Article  Google Scholar 

  • Groom, R. W., & Bailey, R. C. (1989). Decomposition of Magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion. Journal of Geophysical Research, 94(B2), 1913–1925.

    Article  Google Scholar 

  • Hansen, P. (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34, 561–580. https://doi.org/10.1137/1034115.

    Article  Google Scholar 

  • Hansen, P. C. (1998). Rank deficient and discrete ill: Posed problems, numerical aspects of linear inversion. Philadelphia: SIAM.

    Book  Google Scholar 

  • Harinarayana, T., Abdul Azeez, K. K., Murthy, D. N., Veeraswamy, K., Eknath Rao, S. P., Manoj, C., et al. (2006). Exploration of geothermal structure in Puga geothermal field, Ladakh Himalayas, India by magnetotelluric studies. Journal of Applied Geophysics, 58(4), 280–295.

    Article  Google Scholar 

  • Hermance, J. F. (1979). The electrical conductivity of materials containing partial melts: A simple model from Archie’s Law. Geophysical Research Letters, 6(7), 613–616.

    Article  Google Scholar 

  • Hyndman, R. D., & Hyndman, D. W. (1968). Water saturation and high electrical conductivity in the lower crust. Earth and Planetary Science Letters, 4(6), 427–432.

    Article  Google Scholar 

  • Jones, A. G., Groom, R. D., & Kurtz, R. D. (1993). Decomposition and modelling of the BC 87 data set. Journal of Geomagnetism and Geoelectricity, 45(9), 1127–1150.

    Article  Google Scholar 

  • Karmalkar, N. R., Kale, M. G., Duraiswamy, R. A., & Zonnalagadda, M. (2008). Magma underplating and storage in the crust building process beneath the Kutch region, NW India. Current Science, 94, 1582–1588.

    Google Scholar 

  • Kayal, J. R., Zhao, D., Mishra, O. P., De, R., & Singh, O. P. (2002). The 2001 Bhuj earthquake: Tomographic evidence for fluids at the hypocenter and its implications for rupture nucleation. Geophysical Research Letters, 29(24), 51–54.

    Article  Google Scholar 

  • Kumar, G. P., Kumar, V., Nagar, M., Singh, D., Mahendar, E., Patel, P., et al. (2017). Magnetotelluric impedance tensor analysis for identification of transverse tectonic feature in the Wagad uplift, Kachchh, northwest India. Journal of Earth System and Science. https://doi.org/10.1007/s12040-017-0851-x.

    Google Scholar 

  • Lebedev, E. B., & Kitarov, N. I. (1964). Dependence of the beginning of melting of granite and the electrical conductivity of its melt on high water vapor pressure. Geochemistry International, 1, 193–197.

    Google Scholar 

  • Ledo, J., & Jones, A. G. (2004). Lithospheric structure of the Yukon, northern Canadian Cordillera, obtained from magnetotelluric data. Journal of Geophysical Research, 109, B04410. https://doi.org/10.1029/2003jb002516.

    Article  Google Scholar 

  • Li, S., Unsworth, M. J., Booker, J. R., Wei, W., Tan, H., & Jones, A. G. (2003). Partial melt or aqueous fluid in the midcrust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophysical Journal International, 153, 289–304.

    Article  Google Scholar 

  • Lyell, C. (1855). A manual of elementary geology. London: John Murray.

    Book  Google Scholar 

  • Mandal, P., & Pujol, J. (2006). Seismic imaging of the aftershock zone of the 2001 Mw 7.7 Bhuj earthquake, India. Geophysical Research Letters, 33(5), 5–10. https://doi.org/10.1029/2005GL025275.

    Article  Google Scholar 

  • Mandal, P., Rastogi, B. K., Satyanarayana, H. V. S., & Kousalya, M. (2004). Results from local earthquake velocity tomography: Implications toward the source process involved in generating the 2001 Bhuj earthquake in the lower crust beneath Kachchh (India). Bulletin of Seismological Society of America, 94(2), 633–649.

    Article  Google Scholar 

  • McNeice, G. W., & Jones, A. G. (2001). Multisite, multi frequency tensor decomposition of magnetotelluric data. Geophysics, 66(1), 158–173. https://doi.org/10.1190/1.1444891.

    Article  Google Scholar 

  • Merh, S. S. (1995). Geology of Gujarat (pp. 156–161). Bangalore: Geological Society of India.

    Google Scholar 

  • Mishra, D. C., Chandrasekhar, D. V., & Singh, B. (2005). Tectonics and crustal structures related to Bhuj earthquake of January 26, 2001: Based on gravity and magnetic surveys constrained from seismic and seismological studies. Tectonophysics, 396(3), 195–207.

    Article  Google Scholar 

  • Mishra, O. P., Singh, A. P., Kumar, D., & Rastogi, B. K. (2014). An insight crack density, saturation rate, and porosity model of the 2001 Bhuj earthquake in the stable continental region of western India. Journal of Asian Earth Sciences, 83, 48–59.

    Article  Google Scholar 

  • Mishra, O. P., & Zhao, D. (2003). Crack density, saturation rate and porosity at the 2001 Bhuj, India, earthquake hypocenter a fluid-driven earthquake? Earth and Planetary Science Letters, 212(3–4), 393–405.

    Article  Google Scholar 

  • Mohan, K, Kushwaha D, Chaudhary, P. & Nagar, M. (2017). Characterization of North Kathiawar Fault using Magnetotellurics in Northwest Saurashtra, Gujarat. Institute of Seismological Research Annual Report-2017, pp. 101.

  • Mohan, K., Chaudhary, P., Patel, P., Chaudhary, B. S., & Chopra, S. (2018). Magnetotelluric study to characterize Kachchh Mainland Fault (KMF) and Katrol Hill Fault (KHF) in the western part of Kachchh region of Gujarat, India. Tectonophysics, 726, 43–61.

    Article  Google Scholar 

  • Mohan, K., Rastogi, B. K., & Chaudhary, P. (2015). Magnetotelluric studies in the epicenter zone of 2001, Bhuj earthquake. Journal of Asian Earth Sciences, 98, 75–84.

    Article  Google Scholar 

  • Naganjaneyulu, K., Ledo, J. J., & Queralt, P. (2010). Deep crustal electromagnetic structure of Bhuj earthquake region (India) and its implications. Geologica Acta, 8(1), 83–97.

    Google Scholar 

  • Naganjaneyulu, K., & Santosh, M. (2011). Geophysical signatures of fluids in a reactivated Precambrian collisional suture in central India. Geoscience Frontiers, 2(3), 289–301.

    Article  Google Scholar 

  • Newton, R. C. (1989). Metamorphic fluids in the deep crust. Annual Review of Earth and Planetary Sciences, 17, 385–412.

    Article  Google Scholar 

  • Patro, B. P. K., Harinarayana, T., Sastry, R. S., Rao, M., Manoj, C., Naganjaneyulu, K., et al. (2005). Electrical imaging of Narmada–Son lineament zone, central India from magnetotellurics. Physics of the Earth and Planetary Interiors, 148, 215–232.

    Article  Google Scholar 

  • Prasad, B. R., Venkateswarlu, N., Prasad, A. S. S. S. R. S., Murthy, A. S. N., & Sateesh, T. (2010). Basement configuration of on-land Kutch basin from seismic refraction studies and modeling of first arrival travel time skips. Journal of Asian Earth Sciences, 39(5), 460–469.

    Article  Google Scholar 

  • Rao, K. M., Ravi Kumar, M., & Rastogi, B. K. (2015). Crust beneath the northwestern Deccan volcanic province, India: Evidence for uplift and magmatic underplating. Journal of Geophysical Research, 120(5), 3385–3405.

    Google Scholar 

  • Raval, U. (2001). Earthquakes over Kutch: A region of ‘trident’ space–time geodynamics. Current Science, 81(7), 809–815.

    Google Scholar 

  • Rodi, W., & Mackie, R. L. (2001). Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66, 174–187.

    Article  Google Scholar 

  • Sastry, R. S., Nandini, N., & Sarma, S. V. S. (2008). Electrical imaging of deep crustal features of Kutch, India. Geophysical Journal International, 172, 934–944.

    Article  Google Scholar 

  • Seshu, D., Rama Rao, P., & Naganjaneyulu, K. (2015). Three-Dimensional gravity modeling of Kutch region, India. Journal of Asian Earth Sciences, 115, 16–28.

    Article  Google Scholar 

  • Singh, A. P., Dorbath, C., Kumar, M. R., Kumar, S., Choudhary, I., & Kayal, J. R. (2016). Fault Geometry of the Mw 7.7 Western India intraplate earthquake: Constrained from double-difference tomography and fault-plane solutions. Bulletin of the Seismological Society of America, 106(4), 5–10. https://doi.org/10.1785/0120150280.

    Article  Google Scholar 

  • Smith, J. T. (1995). Understanding telluric distortion matrices. Geophysical Journal International, 122(1), 219–226.

    Article  Google Scholar 

  • Smith, J. T. (1997). Estimating galvanic-distortion magnetic fields in magnetotellurics. Geophysical Journal International, 130(1), 65–72.

    Article  Google Scholar 

  • Stanley, W. D. (1989). Comparison of geoelectrical/tectonic models for suture zones in the western USA and eastern Europe: are black shales a possible source of high conductivities? Physics of the Earth and Planetary Interiors, 53, 228–238.

    Article  Google Scholar 

  • Stesky, R. M., & Brace, W. F. (1973). Electrical conductivity of serpentinized rocks to 6 kilobars. Journal of Geophysical Research, 78, 7614–7621.

    Article  Google Scholar 

  • Swift, C.M. (1967). A magnetotelluric investigation of electrical conductivity anomaly in the southwestern United States, 1967, PhD thesis, Massachusetts Institute of Technology.

  • Unsworth, M., Wenbo, W., Jones, A. G., Li, S., Bedrosian, P., Booker, J., et al. (2004). Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data. Journal of Geophysical Research, 109, B02403.

    Article  Google Scholar 

  • Wadia, D. N. (1926). Geology of India. London: Macmillan.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director General and Director, ISR for their encouragement and permission to publish this work. Thanks to the Government of Gujarat for providing funds under project no. 3425/60/04 to conduct this research work. The authors are also thankful to the editor and two anonymous reviewers for their constructive comments and helpful suggestions for improving the quality of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Mohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, P., Mohan, K. & Chaudhary, B.S. Magnetotellurics Study to Identify Subsurface Resistivity Structure in the Eastern Part of Kachchh (Little Rann Area) of Gujarat, India. Pure Appl. Geophys. 176, 2479–2496 (2019). https://doi.org/10.1007/s00024-019-02102-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02102-w

Keywords

Navigation