Skip to main content
Log in

Coseismic Groundwater Temperature Response Associated with the Wenchuan Earthquake

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Various physical, geophysical, geochemical, electrical and hydrological parameters are measured on the surface and in shallow/deep boreholes throughout mainland China to obtain early warning signals of impending earthquakes. Numerous wells are equipped with water level and temperature sensors for continuous observations of the water level and groundwater temperature. An analysis of water temperature data from boreholes equipped with water temperature sensors reveals that nearly half of the boreholes show coseismic response associated with the Wenchuan earthquake (Mw 7.9, 12 May, 2008). The coseismic response of the groundwater temperature cannot be differentiated from the groundwater flow or movement when the earthquake occurred, but there is no fixed relationship between the temperature variation and the water flow. At the same time, we observed that the rock temperature in dry wells can record the seismic events and even the pre-seismic abnormal information. The spatial distribution of the coseismic groundwater temperature response is random and irregular, which does not support the dislocation model of seismic faults at the regional or larger scale. Changes in the groundwater temperature are closely related to the borehole temperature gradient, lithology profile and geological environment of the borehole and depths of the aquifers. The mechanism of the coseismic groundwater temperature response can be explained by an enhanced permeability induced by an earthquake. The groundwater temperature increases if the temperature sensor in the borehole is located near the deep-circulating aquifer and decreases if the sensor is near the shallow-circulating aquifer when seismic waves arrive. The groundwater temperature may be slightly affected or even unchanged if the temperature sensor is far from the aquifer during the propagation of seismic waves. However, it was hard to conclude the changes of rock temperature observed in six dry wells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arabelos, D., Asteriadis, G., Contadakis, M., Zioutas, G., Xu, D., Zhang, C., et al. (2001). The use of an outlier detecting method in time series of continuous daily measurements of underground water level and temperature in earthquake prediction investigation. Tectonophysics,338(3), 315–323.

    Article  Google Scholar 

  • Asteriadis, G., & Livieratos, E. (1989). Pre-seismic responses of underground water level and temperature concerning a 4.8 magnitude earthquake in Greece on October 20, 1988. Tectonophysics,170(1–2), 165–169.

    Article  Google Scholar 

  • Blanchard, F. B., & Byerly, P. (1935). A study of a well gauge as a seismograph. Bulletin of the Seismological Society of America,25(4), 313–321.

    Google Scholar 

  • Bonfanti, P., D’Alessandro, W., Dongarrà, G., Parello, F., & Valenza, M. (1996). Medium-term anomalies in groundwater temperature before 1991–1993 Mt. Etna eruption. Journal of Volcanology and Geothermal Research,73(3–4), 303–308.

    Article  Google Scholar 

  • Brodsky, E. E., Roeloffs, E., Woodcock, D., Gall, I., & Manga, M. (2003). A mechanism for sustained groundwater pressure changes induced by distant earthquakes. Journal of Geophysical Research: Solid Earth, 108(B8).

  • Che, Y. T., He, A. H., & Yu, J. Z. (2014). Mechanisms of water-heat dynamics and earth-heat dynamics of well water temperature micro-behavior. Acta Seismologica Sinica (in Chinese),36(1), 106–117.

    Google Scholar 

  • Chen, D. Q., Liu, Y. W., Yang, X. H., & Liu, Y. M. (2007). Co-seismic water level, temperature responses of some wells to far-field strong earthquakes and their mechanisms. Seismology and Geology (in Chinse),29(1), 122–132.

    Google Scholar 

  • Cox, S. C., Menzies, C. D., Sutherland, R., Denys, P. H., Chamberlain, C., & Teagle, D. A. (2015). Changes in hot spring temperature and hydrogeology of the Alpine Fault hanging wall, New Zealand, induced by distal South Island earthquakes. Geofluids,15(1–2), 216–239.

    Article  Google Scholar 

  • Crustal Movement Observation Network of China. (2008). Assessing the coseismic displacement field of Wenchuan MS 8.0 earthquake in 2008. Science in China Series D-Earth Sciences,38(10), 1195–1206. (in Chinese).

    Google Scholar 

  • Cui, X. F., Hu, X. P., Yu, C. Q., Tao, K., Wang, Y., & Ning, J. (2011). Research on focal mechanism solutions of Wenchuan earthquake sequence. Acta Sci. Nat. Univ. Pekinensis,6, 1063–1072.

    Google Scholar 

  • Dai, F. C., Xu, C., Yao, X., Xu, L., Tu, X. B., & Gong, Q. M. (2011). Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. Journal of Asian Earth Sciences,40(4), 883–895.

    Article  Google Scholar 

  • der Hilst, B. H. (2008). A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China. GSA Today,18(7), 5.

    Google Scholar 

  • Elkhoury, J. E., Brodsky, E. E., & Agnew, D. C. (2006). Seismic waves increase permeability. Nature,441(7097), 1135–1138.

    Article  Google Scholar 

  • Fu, Z. Z. (1988). Dynamic observation and geothermal precursor. Tectonic Stress and Crustal,1(1), 1–5. (in Chinese).

    Google Scholar 

  • Fulton, P. M., Brodsky, E. E., Kano, Y., Mori, J., Chester, F., Ishikawa, T., et al. (2013). Low coseismic friction on the Tohoku-Oki fault determined from temperature measurements. Science,342(6163), 1214–1217.

    Article  Google Scholar 

  • He, A., Fan, X., Zhao, G., Liu, Y., Singh, R. P., & Hu, Y. (2017a). Co-seismic response of water level in the Jingle well (China) associated with the Gorkha Nepal (Mw 7.8) earthquake. Tectonophysics.,714–715(2017), 82–89.

    Article  Google Scholar 

  • He, A., & Singh, R. (2018). Groundwater level response to the Wenchuan earthquake of May 2008. Geomatics, Natural Hazards and Risk,9(1), 1420–1436.

    Google Scholar 

  • He, A., Singh, R. P., Sun, Z., Ye, Q., & Zhao, G. (2016). Comparison of regression methods to compute atmospheric pressure and earth tidal coefficients in water level associated with Wenchuan Earthquake of 12 May 2008. Pure and Applied Geophysics,173(7), 2277–2294.

    Article  Google Scholar 

  • He, A. H., Zhao, G., Liu, C. L., & Fan, L. L. (2012). The anomaly characteristics before Wenchuan earthquake and Yushu earthquake in Qinghai Yushu and Delingha geothermal observation wells. Chinese J. Geophys,55(4), 1261–1268. (in Chinese).

    Google Scholar 

  • He, A., Zhao, G., Sun, Z., & Singh, R. P. (2017b). Co-seismic multilayer water temperature and water level changes associated with Wenchuan and Tohoku-Oki earthquakes in the Chuan no. 03 well, China. Journal of Seismology,21(4), 719–734.

    Article  Google Scholar 

  • Itaba, S., Koizumi, N., Matsumoto, N., Takahashi, M., Sato, T., Ohtani, R., et al. (2008). Groundwater level changes related to the ground shaking of the Noto Hanto Earthquake in 2007. Earth, planets and space,60(12), 1153–1159.

    Article  Google Scholar 

  • Johnson, H. P., Hutnak, M., Dziak, R. P., & Fox, C. G. (2000). Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge. Nature,407(6801), 174.

    Article  Google Scholar 

  • Kano, Y., Mori, J., Fujio, R., Ito, H., Yanagidani, T., Nakao, S., & Ma, K. F. (2006). Heat signature on the Chelungpu fault associated with the 1999 Chi–Chi, Taiwan earthquake. Geophysical Research Letters, 33(14), L14306. https://doi.org/10.1029/2006GL026733.

    Article  Google Scholar 

  • King, C. Y., Azuma, S., Igarashi, G., Ohno, M., Saito, H., & Wakita, H. (1999). Earthquake-related water-level changes at 16 closely clustered wells in Tono, central Japan. Journal of Geophysical Research Solid Earth,104(B6), 13073–13082.

    Article  Google Scholar 

  • Kitagawa, Y., Koizumi, N., & Tsukuda, T. (1996). Comparison of postseismic groundwater temperature changes with earthquake-induced volumetric strain release: Yudani Hot Spring, Japan. Geophysical Research Letters,23(22), 3147–3150.

    Article  Google Scholar 

  • Lachenbruch, A. H. (1980). Frictional heating, fluid pressure, and the resistance to fault motion. Journal of Geophysical Research: Solid Earth,85(B11), 6097–6112.

    Article  Google Scholar 

  • Lee, M., Liu, T. K., Ma, K. F., & Chang, Y. M. (2002). Coseismic hydrological changes associated with dislocation of the September 21, 1999 Chichi earthquake, Taiwan. Geophysical Research Letters,29(17), 1–5.

    Article  Google Scholar 

  • Li, H., Xue, L., Brodsky, E. E., Mori, J. J., Fulton, P. M., Wang, H., et al. (2015). Long-term temperature records following the Mw 7.9 Wenchuan (China) earthquake are consistent with low friction. Geology,43(2), 163–166.

    Article  Google Scholar 

  • Liu, Y. W., Ren, H. W., Lei, Z., Hong, F. U., Sun, X. L., De-Qiang, H. E., et al. (2015). Underground fluid anomalies and the precursor mechanisms of the Ludian m_s6.5 earthquake. Seismology and Geology,37(1), 307–318.

    Google Scholar 

  • Ma, Y. C., Liu, Y. W., & Ma, W. Y. (2014). Response of water temperature in wells around Bohai area to the 2011 Japan Mw9.0 earthquake. Earthquake,34(3), 40–49. (in Chinese).

    Google Scholar 

  • Matsumoto, N. (1992). Regression analysis for anomalous changes of ground water level due to earthquakes. Geophysical Research Letters,19(12), 1193–1196.

    Article  Google Scholar 

  • Matsumoto, N., Kitagawa, G., & Roeloffs, E. A. (2003). Hydrological response to earthquake in the Haibara well, central Japan-I. Groundwater level changes revealed using state space decomposition of atmospheric pressure, rainfall and tidal response. Geophysical Journal International, 155, 885–889.

    Article  Google Scholar 

  • Meade, C., & Jeanloz, R. (1991). Deep-focus earthquakes and recycling of water into the Earth’s mantle. Science,252(5002), 68–72.

    Article  Google Scholar 

  • Mogi, K., Mochizuki, H., & Kurokawa, Y. (1989). Temperature changes in an artesian spring at Usami in the Izu Peninsula (Japan) and their relation to earthquakes. Tectonophysics,159(1–2), 95–108.

    Article  Google Scholar 

  • Molnar, P., & England, P. (1990). Temperatures, heat flux, and frictional stress near major thrust faults. Journal of Geophysical Research: Solid Earth,95(B4), 4833–4856.

    Article  Google Scholar 

  • Montgomery, D. R., & Manga, M. (2003). Streamflow and water well responses to earthquakes. Science,300(5628), 2047–2049.

    Article  Google Scholar 

  • Mori, J. J., Li, H., Wang, H., Kano, Y., Pei, J., &, Xu, Z. (2010). Temperature measurements in the WFSD-1 borehole following the 2008 Wenchuan earthquake (Mw7. 9). In AGU Fall Meeting Abstracts.

  • Nakamura, Y., & Wakita, H. (1984). Precise temperature measurement of groundwater for earthquake-prediction study. Pure and Applied Geophysics,122(2), 164–174.

    Google Scholar 

  • Parsons, T., Ji, C., & Kirby, E. (2008). Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature,454(7203), 509.

    Article  Google Scholar 

  • Pinson, F., Gregoire, O., Quintard, M., Prat, M., & Simonin, O. (2007). Modeling of turbulent heat transfer and thermal dispersion for flows in flat plate heat exchangers. International journal of heat and mass transfer,50(7–8), 1500–1515.

    Article  Google Scholar 

  • Piombo, A., Martinelli, G., & Dragoni, M. (2005). Post-seismic fluid flow and Coulomb stress changes in a poroelastic medium. Geophysical Journal International,162(2), 507–515.

    Article  Google Scholar 

  • Qiang, Z., Dian, C., Li, L., Xu, M., Ge, F., Liu, T., et al. (1999). Atellitic thermal infrared brightness temperature anomaly image—short-term and impending earthquake precursors. Science in China series D: Earth Sciences,42(3), 313–324.

    Article  Google Scholar 

  • Quilty, E. G., & Roeloffs, E. A. (1997). Water-level changes in response to the 20 December 1994 earthquake near Parkfield, California. Bulletin of the Seismological Society of America,87(2), 310–317.

    Google Scholar 

  • Roeloffs, E. A. (1998). Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. Journal of Geophysical Research: Solid Earth,103, 869–889.

    Article  Google Scholar 

  • Roeloffs, E., Sneed, M., Galloway, D. L., Sorey, M. L., Farrar, C. D., Howle, J. F., et al. (2003). Water-level changes induced by local and distant earthquakes at Long Valley caldera, California. Journal of Volcanology and Geothermal Research,127(3), 269–303.

    Article  Google Scholar 

  • Rojstaczer, S., & Wolf, S. (1992). Permeability changes associated with large earthquakes: An example from Loma Prieta, California. Geology,20(3), 211–214.

    Article  Google Scholar 

  • Rojstaczer, S., Wolf, S., & Michel, R. (1995). Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature,373, 237–239.

    Article  Google Scholar 

  • Shen, Z. K., Sun, J., Zhang, P., Wan, Y., Wang, M., Bürgmann, R., et al. (2009). Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nature Geoscience,2(10), 718.

    Article  Google Scholar 

  • Shi, Y. L., Cao, J. L., Ma, L., & Yin, B. J. (2007). Tele-seismic coseismic well temperature changes and their interpretation. Acta Seismologica Sinica,20(3), 280–289.

    Article  Google Scholar 

  • Shi, Z., Wang, G., Liu, C., Mei, J., Wang, J., & Fang, H. (2013). Coseismic response of groundwater level in the Three Gorges well network and its relationship to aquifer parameters. Chinese Science Bulletin,58(25), 3080–3087.

    Article  Google Scholar 

  • Shimamura, H., Ino, M., Hikawa, H., & Iwasaki, T. (1984). Groundwater microtemperature in earthquake regions. Pure and Applied Geophysics,122(6), 933–946.

    Article  Google Scholar 

  • Shimamura, H., & Watanabe, H. (1981). Coseismic changes in groundwater temperature of the Usu volcanic region. Nature,291(5811), 137–138.

    Article  Google Scholar 

  • Sibson, R. H. (1973). Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief. Nature,243(126), 66–68.

    Google Scholar 

  • Sugisaki, R. (1981). Deep-seated gas emission induced by the earth tide: A basic observation for geochemical earthquake prediction. Science,212(4500), 1264–1266.

    Article  Google Scholar 

  • Sun, X., Wang, G., & Yang, X. (2015). Coseismic response of water level in Changping well, China, to the Mw 9.0 Tohoku earthquake. Journal of Hydrology,531, 1028–1039.

    Article  Google Scholar 

  • Tanaka, H., Chen, W. M., Wang, C. Y., Ma, K. F., Urata, N., Mori, J., & Ando, M. (2006). Frictional heat from faulting of the 1999 Chi–Chi, Taiwan earthquake. Geophysical Research Letters, 33(16), L16316. https://doi.org/10.1029/2006GL026673

    Article  Google Scholar 

  • Teng, J. W. (2003). Introduction to solid geophysics. Beijing: Seismological Press.

    Google Scholar 

  • Virk, H. S., & Singh, B. (1993). Radon anomalies in soil-gas and groundwater as earthquake precursor phenomena. Tectonophysics,227(1–4), 215–224.

    Article  Google Scholar 

  • Wakita, H. (1975). Water wells as possible indicators of tectonic strain. Science,189(4202), 553–555.

    Article  Google Scholar 

  • Wang, C. Y., & Chia, Y. (2008). Mechanism of water level changes during earthquakes: Near field versus intermediate field. Geophysical Research Letters, 35(12), L12402. https://doi.org/10.1029/2008GL034227.

    Article  Google Scholar 

  • Wang, C. Y., Chia, Y., Wang, P. L., & Dreger, D. (2009). Role of S waves and Love waves in coseismic permeability enhancement. Geophysical Research Letters, 36(9), L09404. https://doi.org/10.1029/2009GL037330

    Article  Google Scholar 

  • Wang, C. Y., & Manga, M. (2009). Earthquakes and water (pp. 1–38). New York: Springer.

    Book  Google Scholar 

  • Wang, C. Y., Manga, M., Wang, C. H., & Chen, C. H. (2012). Transient change in groundwater temperature after earthquakes. Geology,40(2), 119–122.

    Article  Google Scholar 

  • Wang, C. Y., Wang, C. H., & Manga, M. (2004). Coseismic release of water from mountains: evidence from the 1999 (Mw = 7.5) Chi–Chi, Taiwan, earthquake. Geology,32(9), 769–772.

    Article  Google Scholar 

  • Xu, X., Wen, X., Yu, G., Chen, G., Klinger, Y., Hubbard, J., et al. (2009). Coseismic reverse-and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake. China. Geology,37(6), 515–518.

    Article  Google Scholar 

  • Yan, R., Woith, H., & Wang, R. (2014). Groundwater level changes induced by the 2011 Tohoku earthquake in China mainland. Geophysical Journal International,199(1), 533–548.

    Article  Google Scholar 

  • Yu, J. Z., Che, Y. T., & Liu, W. (1997). Preliminary study on hydrodynamic mechanism of microbehavior of water temperature in well. Earthquake,17(4), 389–396. (in Chinese).

    Google Scholar 

  • Yu, J. Z., Che, Y. T., Liu, C. L., & Li, W. M. (2012). Co-seismic responses of water level and temperature in wells of the Jinshajiang groundwater observation network to the Japan Ms 9.0 earthquake characteristics and mechanism. Earthquake,32(1), 59–69. (in Chinese).

    Google Scholar 

  • Zhang, L., Luo, R. J., Gao, W. P., Su, Y. J., Qian, X. D., & Mao, Y. (2016). Analysis on coseismal response characteristic of underground fluid related to Nepal M8.1 earthquake in Yunnan. Journal of Seismological Research,39(4), 537–544. (in Chinese).

    Google Scholar 

  • Zhang, Z. G., Zhang, S. X., Li, W., Yin, H. W., & Han, W. Y. (2007). Analysis on the mechanism of formation characteristics of water temperature tide in Changli well. Earthquake,27(3), 34–40. (in Chinese).

    Google Scholar 

Download references

Acknowledgments

The present study is funded by the National Natural Science Foundation of China (no. 41772256) and the Special Fund for Basic Scientific Research of the Central Public Research Institutes (no. ZDJ2017-25). The authors thank the China Earthquake Network Center for providing the groundwater level data and station information. The original data can be found in Zenodo (DOI: Zenodo.1038140). The authors thank three anonymous referees for their detailed comments/suggestions that have helped us to improve an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anhua He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, A., Singh, R.P. Coseismic Groundwater Temperature Response Associated with the Wenchuan Earthquake. Pure Appl. Geophys. 177, 109–120 (2020). https://doi.org/10.1007/s00024-019-02097-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02097-4

Keywords

Navigation