Skip to main content
Log in

Geostrophic Flow and Wind-Driven Ocean Currents Depending on the Spatial Dimensionality of the Medium

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

An approach based on noninteger fractional dimension is used to derive extended forms of the Navier–Stokes equations in order to describe geostrophic flow and wind-driven ocean current motion. The equations give rise to several features not obtained in the conventional formalism, which are discussed in some detail. This study demonstrates that the spatial dimensionality of the medium plays a crucial role in rotating fluids and ocean physics, and besides the extended Navier–Stokes equations could be used to describe turbulent ocean physical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramowitz, M., & Stegun, I. A. (1983). Handbook of mathematical functions with formulas, graphs, and mathematical tables applied mathematics series 55, ninth reprint with additional corrections of tenth original printing with corrections (December 1972) (1st ed.). Washington, DC: United States Department of Commerce, National Bureau of Standards; Dover Publications.

    Google Scholar 

  • Bai, Y., Jiang, Y., Liu, F., & Zhang, Y. (2017). Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation. AIP Advances, 7, 126309–126314.

    Google Scholar 

  • Balankin, A. S. (2017). Steady laminar flow of fractal fluids. Physics Letters A, 381, 623–628.

    Article  Google Scholar 

  • Balankin, A. S., & Elizarraraz, B. E. (2012). Map of fluid flow in fractal porous medium into fractal continuum flow. Physical Review E, 85, 056314.

    Article  Google Scholar 

  • Balankin, A. S., & Espinoza, B. (2012). Hydrodynamics of fractal continuum flow. Physical Review E, 85, 025302(R).

    Article  Google Scholar 

  • Carpinteri, A., & Mainardi, F. (1997). Fractals and fractional calculus in continuum mechanics. New York: Springer.

    Book  Google Scholar 

  • El-Nabulsi, R. A. (2017). The Hamilton–Jacobi analysis of powers of singular Lagrangians: A connection between the modified Schrödinger and the Navier–Stokes equations. Qualitative Theory of Dynamical Systems. https://doi.org/10.1007/s12346-017-0257-9.

    Google Scholar 

  • Faber, T. E. (1995). Fluid dynamics for physicists. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Galdi, G. P., & Silvestre, A. L. (2006). Existence of time-periodic solutions to the Navier–Stokes equations around a moving body. Pacific Journal of Mathematics, 223, 251–267.

    Article  Google Scholar 

  • Gao, F., & Yang, X. J. (2016). Fractional Maxwell fluid with fractional derivative without singular kernel. Thermal Science, 20, S871–S877.

    Article  Google Scholar 

  • Golmankhaneh, A. K., & Tunc, C. (2017). On the Lipschitz condition in the fractal calculus. Chaos, Solitons & Fractals, 95, 140–147.

    Article  Google Scholar 

  • Greengard, L., & Kropinski, M. C. (1998). An integral equation approach to the incompressible Navier–Stokes equations in two dimensions. SIAM Journal on Scientific Computing, 20, 318–336.

    Article  Google Scholar 

  • Hayat, T., Zaib, S., & Fetecau, C. (2010). Flows in a fractional generalized Burgers’ fluid. Journal of Porous Media, 13, 725–739.

    Article  Google Scholar 

  • Heibig, A., & Palade, L. I. (2008). On the rest state stability of an objective fractional derivative viscoelastic fluid model. Journal of Mathematics and Physics, 49, 043101.

    Article  Google Scholar 

  • Herrmann, R. (2011). Fractional calculus: An introduction for physicists. Singapore: World Scientific.

    Book  Google Scholar 

  • Huang, H. P. (2016). Geophysical and environmental fluids dynamics. Arizona: Lectures given at School for Engineering of Matter, Transport and Energy, Arizona State University.

    Google Scholar 

  • Jamil, M., Khan, N.A. (2011). Slip effects in fractional viscoelastic fluids. International Journal of Differential Equations, Article ID193813, 19

  • Jianhua X (2005) Motion equation of vorticity for Newton fluid. arXiv:physics/0512051

  • Kamalov, T. (2011). Axiomatization of mechanics. Quantum Computers and Computing, 11, 52–57.

    Google Scholar 

  • Khan, N. A. (2009). Analytical study of Navier–Stokes equation with fractional orders using He’s homotopy perturbation and variational iteration methods. International Journal of Nonlinear Sciences and Numerical Simulation, 10(9), 1127–1134.

    Google Scholar 

  • Kulish, V. V., & Lage, J. L. (2002). On the relationship between fluid velocity and de Broglie’s wave function and the implications to the Navier–Stokes equation. International Journal of Fluid Mechanics, 29, 40–52.

    Google Scholar 

  • Kumar, D., Singh, J., & Kumar, S. (2015). A fractional model of Navier–Stokes equation arising in unsteady flow of a viscous fluid. Journal of the Association of Arab Universities for Basic and Applied Sciences, 17, 14–19.

    Article  Google Scholar 

  • Landau, L. D., & Lifshitz, E. M. (1987). Fluid mechanics, course of theoretical physics (2nd ed.). Oxford: Pergamon.

    Google Scholar 

  • Lee, S., Ryi, S.K., Lim, H. (2017) Solutions of Navier-Stokes equation with Coriolis force. Advances in Mathematical Physics, 2017, Article ID7042696, 1–9

  • Li, D., & Sinai, Y. G. (2008). Blow ups of complex solutions of the 3D Navier–Stokes system and renormalization group method. Journal of the European Mathematical Society, 10, 267–313.

    Article  Google Scholar 

  • Li, X., Yang, X., & Zhang, Y. (2017). Error estimates of mixed finite element methods for time fractional Navier–Stokes equations. Journal of Scientific Computing, 70, 500–515.

    Article  Google Scholar 

  • Lin, P., Chen, X., & Ong, M. (2004). Finite element methods based on a new formulation for the nonstationary incompressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids, 46, 1169–1180.

    Article  Google Scholar 

  • Meznar, M. (2005). Fluid flows in rotating frames. Jadranska: Lecture given at Department of Physics, University of Ljubljana.

    Google Scholar 

  • Momani, S., & Odibat, Z. (2016). Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Applied Mathematics and Computation, 177, 488–494.

    Article  Google Scholar 

  • Naqvi, Q. A., & Zubair, M. (2016). On cylindrical model of electrostatic potential in fractional dimensional space. Optik-International Journal for Light and Electron Optics, 127, 3243–3247.

    Article  Google Scholar 

  • Nazarenko, S. (2004). Fluid dynamics via examples and solutions. Taylor and Francis Group: CRC Press.

    Google Scholar 

  • Neumann, G., & Pierson, W. J., Jr. (1966). Principles of physical oceanography. Englewood Cliffs: Prentice-Hall. https://doi.org/10.1007/978-3-662-25730-2_4

    Google Scholar 

  • Pedlosky J. (1982), Friction and viscous flow. In: Geophysical fluid dynamics. Springer study edition. Berlin: Springer, 1982

  • Placek, T. D. (2013). Fluids review notes. Alabama: Lectures given at the Chemical Engineering Department, Auburn University.

    Google Scholar 

  • Pope, S. B. (2000). Turbulent flows. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Price, J. F., Weller, R. A., & Schudlich, R. R. (1987). Wind-driven ocean currents and Ekman transport. Science, 238, 1534–1538.

    Article  Google Scholar 

  • Pullin, D. I., & Saffman, G. (1998). Vortex dynamics in turbulence. Annual Review of Fluid Mechanics, 30, 31–51.

    Article  Google Scholar 

  • Rannacher, R. (1993). On the numerical solution of the incompressible Navier–Stokes equations. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 73, 203–216.

    Article  Google Scholar 

  • Rüdiger, G., Gellert, M., Hollerbach, R., Schultz, M., & Stefani, F. (2018). Stability and instability of hydromagnetic Taylor–Couette flows. Physics Reports, 741, 1–89.

    Article  Google Scholar 

  • Saffman, P. G. (1992). Vortex dynamics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Stillinger, F. H. (1977). Axiomatic basis for spaces with noninteger dimensions. Journal of Mathematics and Physics, 18, 1224–1234.

    Article  Google Scholar 

  • Strumendo, M. (2016). Solution of the incompressible Navier–Stokes equations by the method of lines. International Journal for Numerical Methods in Fluids, 80, 317–339.

    Article  Google Scholar 

  • Suykens, J. A. K., & Vandewalle, J. P. L. (1998). Nonlinear modeling: Advanced black-box techniques. Berlin: Springer.

    Book  Google Scholar 

  • Tao, T. (2007). Global regularity for a logarithmically supercritical defocusing nonlinear wave equation for spherically symmetric data. Journal of Hyperbolic Differential Equations, 4, 259–266.

    Article  Google Scholar 

  • Tarasov, V. E. (2011). Fractional dynamics: Applications of fractional calculus to dynamics of particles, fields and media. New York: Springer.

    Google Scholar 

  • Tarasov, V. E. (2014). Anisotropic fractal media by vector calculus in noninteger dimensional space. Journal of Mathematics and Physics, 55, 083510.

    Article  Google Scholar 

  • Tripathi, D. (2011). Peristaltic transport of fractional Maxwell fluids in uniform tubes: Applications in endoscopy. Computers & Mathematics with Applications, 62, 1116–1126.

    Article  Google Scholar 

  • Vallis, G. (2006). Atmospheric and oceanic fluid dynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Wang, K., & Liu, S. (2016). Analytical study of time fractional Navier–Stokes equation by using transform methods. Advances in Difference Equations, 61, 1–12.

    Google Scholar 

  • Wang, S., & Xu, M. (2009). Axial Couette flow of two kinds of fractional viscoelastic fluids in an annulus. Nonlinear Analysis: Real World Applications, 10, 1087–1096.

    Article  Google Scholar 

  • Yu, J. Y. (2017). Geophysical fluid dynamics. Irvine: Lectures given at Department of Earth System Science, School of Physics Sciences, University of California.

    Google Scholar 

  • Zhou, Y., & Peng, L. (2017). On the time-fractional Navier–Stokes equations. Computers and Mathematics with Applications, 73, 874–891.

    Article  Google Scholar 

  • Zubair, M., & Ang, L. K. (2016). Fractional-dimensional Child-Langmuir law for a rough cathode. Physics of Plasmas, 23, 072118.

    Article  Google Scholar 

  • Zubair, M., Mughal, M. J., & Naqvi, Q. A. (2010). The wave equation and general plane wave solutions in fractional space. Progress in Electromagnetics Research, 19, 137–146.

    Article  Google Scholar 

  • Zubair, M., Mughal, M. J., & Naqvi, Q. A. (2011a). Electromagnetic wave propagation in fractional space. In: Electromagnetic Fields and Waves in Fractional Dimensional Space. SpringerBriefs in Applied Sciences and Technology. Beriln: Springer, pp 27–60

    Article  Google Scholar 

  • Zubair, M., Mughal, M. J., & Naqvi, Q. A. (2011b). An exact solution of spherical wave in D-dimensional fractional space. Journal of Electromagnetic Waves and Applications, 25, 1481–1491.

    Google Scholar 

  • Zubair M, Mughal MJ, Naqvi QA (2012) Electromagnetic wave propagation in fractional space. In Electromagnetic fields and waves in fractional dimensional space. Berlin: Springer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. Geostrophic Flow and Wind-Driven Ocean Currents Depending on the Spatial Dimensionality of the Medium. Pure Appl. Geophys. 176, 2739–2750 (2019). https://doi.org/10.1007/s00024-018-2080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2080-x

Keywords

Navigation