Skip to main content
Log in

High-Efficiency Observations: Compressive Sensing and Recovery of Seismic Waveform Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We present a new sampling scheme for seismic network observations and seismic exploration data acquisition based on compressive sensing theory. According to this theory, seismic data can be recovered with a compressive sampling scheme, using fewer samples than in traditional methods, provided that two prerequisites are met. The first prerequisite is sparse representation of the data in a transform domain. We use a one-dimensional wavelet transform to sparsely express the waveform data of the seismic network. For seismic exploration data, we use a curvelet transform as the sparse transform. The second prerequisite is incoherence between the sampling method and sparse transform. To enhance the incoherence, we propose a random sampling scheme for network and exploration observations, as random sampling is incoherent to most data transforms. In particular, we propose temporal random sampling for seismic network data observation and a full random sampling scheme in time and space for seismic exploration data. Compared with random sampling in spatial dimensions only, full random sampling further enhances incoherence because it adds the temporal dimension for randomization. Finally, seismic data are recovered from the compressive sampling data by calculating a sparsity-promoting algorithm in the sparse transform domain. We perform a real data test and synthetic data tests to illustrate that the proposed method can be used stably to achieve compressive sampling and successful recovery of high-resolution seismic waveform data. The results show that good sparse representation of the data and high incoherence between the sampling scheme and the data are important for successful recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bai, L., Liu, Y., Lu, H., Wang, Y., & Chang, X. (2014). Curvelet-domain joint iterative seismic data reconstruction based on compressed sensing. Chinese Journal of Geophysics,57(9), 2937–2945.

    Google Scholar 

  • Bai, L., Lu, H., Liu, Y., & Khan, M. (2017). A fast joint seismic data reconstruction by sparsity-promoting inversion. Geophysical Prospecting,65(4), 926–940.

    Article  Google Scholar 

  • Baraniuk, R. G., & Steeghs, P. (2017). Compressive sensing: A new approach to seismic data acquisition. The Leading Edge,36(8), 642–645.

    Article  Google Scholar 

  • Blumensath, T., & Davies, M. E. (2008). Iterative thresholding for sparse approximations. Journal of Fourier Analysis and Applications,14(5–6), 629–654.

    Article  Google Scholar 

  • Bordley, T. (1983). Linear predictive coding of marine seismic data. IEEE Transactions on Acoustics, Speech, and Signal Processing,31(4), 828–835.

    Article  Google Scholar 

  • Bormann, P. (2012). New manual of seismological observatory practice (NMSOP-2). Potsdam: IASPEI, GFZ German Research Centre for Geosciences.

    Google Scholar 

  • Bosman, C., & Reiter, E. (1993). Seismic data compression using wavelet transforms. In SEG Technical Program Expanded Abstracts 1993 (pp. 1261–1264). https://doi.org/10.1190/1.1822354.

  • Campman, X., Tang, Z., Jamali-Rad, H., Kuvshinov, B., Danilouchkine, M., Ji, Y., et al. (2017). Sparse seismic wavefield sampling. The Leading Edge,36(8), 654–660.

    Article  Google Scholar 

  • Candès, E. J. (2008). The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique,346(9–10), 589–592.

    Article  Google Scholar 

  • Candès, E. J., Demanet, L., Donoho, D. L., & Ying, L. (2006a). Fast discrete curvelet transforms. Society for Industrial and Applied Mathematics Multiscale Modeling and Simulation,5(3), 861–899.

    Article  Google Scholar 

  • Candès, E. J., & Donoho, D. L. (2005a). Continuous curvelet transform: I. Resolution of the wavefront set. Applied and Computational Harmonic Analysis,19(2), 162–197.

    Article  Google Scholar 

  • Candès, E. J., & Donoho, D. L. (2005b). Continuous curvelet transform: II. Discretization and frames. Applied and Computational Harmonic Analysis,19(2), 198–222.

    Article  Google Scholar 

  • Candès, E. J., Romberg, J., & Tao, T. (2006b). Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Threory,52(2), 489–509.

    Article  Google Scholar 

  • Chen, S. B., Donoho, D. L., & Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing,20, 33–61.

    Article  Google Scholar 

  • Chen, Z., Wang, L., Song, Y., & Long, Y. (2018). Seismic data real-time compression and high-precision reconstruction in the wavelet domain based on the compressed sensing. Oil Geophysical Prospecting,53(4), 674–681.

    Google Scholar 

  • Daubechis, I., Defrise, M., & De Mol, C. (2004). An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics,57(11), 1413–1457.

    Article  Google Scholar 

  • Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory,52(4), 1289–1306.

    Article  Google Scholar 

  • Donoho, P. L., Ergas, R. A., & Polzer, R. S. (1999). Development of seismic data compression methods for reliable, low-noise, performance. In SEG Technical Program Expanded Abstracts 1999 (pp. 1903–1906). https://doi.org/10.1190/1.1820919.

  • Donoho, D. L., Tsaig, Y., Drori, I., & Starck, J.-L. (2012). Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory,58(2), 1094–1121.

    Article  Google Scholar 

  • Herrmann, F. J., & Hennenfent, G. (2008). Non-parametric seismic data recovery with curvelet frames. Geophysical Journal of International,173(1), 233–248.

    Article  Google Scholar 

  • Herrmann, F., Wason, H., & Lin, T. T. Y. (2011). Compressive sensing in seismic exploration: an outlook on a new paradigm. CSEG Recorders,36(4), 34–39.

    Google Scholar 

  • Incorporated Research Institutions for Seismology. (2012).  SEED Reference Manual: Standard for the exchange of earthquake Data. Resource document. International Federation of Digital Seismograph Networks.  http://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf. Accessed 14 Feb 2019.

  • Mallat, S. (2008). A wavelet tour of signal processing: the sparse way. Cambridge: Academic Press. (ISBN 9780123743701 0123743702).

    Google Scholar 

  • Mallat, S., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing,41, 3397–3415.

    Article  Google Scholar 

  • Mosher, C., Kaplan, S., & Janiszewski, F. (2012). Non-uniform optimal sampling for seismic survey design. In 74th EAGE Conference and Exhibition incorporating EUROPEC 2012. https://doi.org/10.3997/2214-4609.20148781.

  • Mosher, C., Li, C., Ji, Y., Janiszewski, F., Williams, L., Bankhead, B., Hand, J., & Anderson, J. (2017). Compressive seismic imaging: Moving from research to production. In SEG Technical Program Expanded Abstracts 2017 (pp. 74–78). https://doi.org/10.1190/segam2017-17679803.1.

  • Mosher, C., Li, C., Morley, L., Ji, Y., Janiszewski, F., Olson, R., et al. (2014). Increasing the efficiency of seismic data acquisition via compressive sensing. The Leading Edge,33(4), 386–391.

    Article  Google Scholar 

  • Nuha, H. H., Mohandes, M., & Liu, B. (2018).  Seismic-data compression using autoassociative neural network and restricted Boltzmann machine. In SEG Technical Program Expanded Abstracts 2018 (pp. 186–190). https://doi.org/10.1190/segam2018-2998185.1.

  • Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1993 (Vol. 1, pp. 40–44). https://doi.org/10.1109/ACSSC.1993.342465.

  • Rosten, T., Ramstad, T. A., & Amundsen, L. (2004). Optimization of sub-band coding method for seismic data compression. Geophysical Prospecting,52(5), 359–378.

    Article  Google Scholar 

  • Savazzi, S., & Spagnolini, U. (2011). Compression and coding for cable-free land acquisition systems. Geophysics,76(5), Q29–Q39.

    Article  Google Scholar 

  • Spanias, A. S., Jonsson, S. B., & Stearns, S. D. (1991). Transform methods for seismic data compression. IEEE Transactions on Geoscience and Remote Sensing,29(3), 407–416.

    Article  Google Scholar 

  • Wood, L. C. (1974). Seismic data compression methods. Geophysics,39(4), 499–525.

    Article  Google Scholar 

  • Zhang, Y., Silva, C., Kumar, R., & Herrmann, F. (2017). Massive 3D seismic data compression and inversion with hierarchical Tucker. In SEG Technical Program Expanded Abstracts 2017 (pp. 1347–1352). https://doi.org/10.1190/segam2017-17742951.1.

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (grant nos. 41704061 and 41730425), the National Major Project of China (grant no. 2017ZX05008-007) and the Youth Backbone Training Program for Seismic Networks (grant no. CEA-JC/QNCZ-18322). The authors are grateful to the reviewers for their useful suggestions and comments. The seismic data tests in this paper use the fftw package (http://www.fftw.org), wavelib package (https://github.com/rafat/wavelib), curvelet package (http://www.curvelet.org/) and YASEIS package (https://seiscode.iris. Washington.edu/projects/yaseis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyi Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Lu, H. & Liu, Y. High-Efficiency Observations: Compressive Sensing and Recovery of Seismic Waveform Data. Pure Appl. Geophys. 177, 469–485 (2020). https://doi.org/10.1007/s00024-018-2070-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2070-z

Keywords

Navigation