Advertisement

An Operational Tracking Method for the MJO Using Extended Empirical Orthogonal Functions

  • A. Dey
  • R. Chattopadhyay
  • A. K. SahaiEmail author
  • R. Mandal
  • S. Joseph
  • R. Phani
  • S. Abhilash
Article
  • 98 Downloads

Abstract

Several methods are available to track the intraseasonal oscillation, namely the Madden–Julian oscillation (MJO) and monsoon intraseasonal oscillation (MISO). However, no methods to track both the modes in a uniform framework for real-time application exist. A new method to track the smooth propagation of the MJO and MISO is proposed to use it for real-time monitoring. The new approach is based on extended empirical orthogonal function (EEOF) analysis of the combined field of meridionally averaged zonal wind at 850 hPa (U850), zonal wind at 200 hPa and the velocity potential at 200 hPa. The EEOF method does not merely capture the MJO but also smooths (i.e., filters out undesired modes) the temporal propagation in the phase space defined by first two leading principal components (PCs) of the EEOF. Using these leading PCs, we additionally introduce a seasonally varying regression coefficient to filter out the space time structure of the MJO in various fields (rainfall/outgoing long-wave radiation, etc.). These reconstructed fields are then used to link the bidirectional phase movement (i.e., northward propagating MISO and eastward propagating MJO) during boreal summer. The life cycle of the MJO and MISO could be captured with equal fidelity with this current method. MJO filtering could be carried out for any space–time data, not limited to the variables/fields used in EEOF analysis. Examples of the TOGA-COARE and DYNAMO period MJO as well as a few strong MISO events are discussed to check the robustness of the newly proposed method.

Notes

Acknowledgements

The authors express sincere thanks to the Ministry of Earth Sciences, Government of India, for the full support of the research carried out at the Indian Institute of Tropical Meteorology. We thank Dr. Harry H. Hendon, Bureau of Meteorology, Australia, for his suggestions/comments in improving this manuscript. All data sources (NCEP–NCAR, IMD) are thankfully acknowledged. The figures and graphs were plotted using GrADS, NCAR command language (NCL) and Xmgrace. The authors express sincere thanks to the developers for making software packages freely available.

Supplementary material

24_2018_2066_MOESM1_ESM.docx (616 kb)
Supplementary material 1 (DOCX 615 kb)

References

  1. de Szoeke, S. P., Edson, J. B., Marion, J. R., Fairall, C. W., & Bariteau, L. (2014). The MJO and air–sea interaction in TOGA COARE and DYNAMO. Journal of Climate, 28(2), 597–622.  https://doi.org/10.1175/JCLI-D-14-00477.1.CrossRefGoogle Scholar
  2. Ferranti, L., Palmer, T. N., Molteni, F., & Klinker, E. (1990). Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. Journal of the Atmospheric Sciences, 47(18), 2177–2199.  https://doi.org/10.1175/1520-0469(1990)047%3c2177:TEIAWT%3e2.0.CO;2.CrossRefGoogle Scholar
  3. Goswami, B. N. (2005). South Asian monsoon. Intraseasonal variability in the atmosphere-ocean climate system (pp. 19–61). Berlin: Springer.CrossRefGoogle Scholar
  4. Haltiner, G. J., & Williams, R. T. (1980). Numerical prediction and dynamic meteorology. Oxford: Wiley.Google Scholar
  5. Hannachi, A., Jolliffe, I. T., & Stephenson, D. B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology, 27(9), 1119–1152.  https://doi.org/10.1002/joc.1499.CrossRefGoogle Scholar
  6. Hendon, H. H. (1986). Streamfunction and velocity potential representation of equatorially trapped waves. Journal of the Atmospheric Sciences, 43(23), 3038–3042.  https://doi.org/10.1175/1520-0469(1986)043%3c3038:SAVPRO%3e2.0.CO;2.CrossRefGoogle Scholar
  7. Hendon, H. H., & Salby, M. L. (1994). The life cycle of the Madden–Julian oscillation. Journal of Atmospheric Science, 51, 2225–2237.CrossRefGoogle Scholar
  8. Higgins, R. W., & Mo, K. C. (1997). Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. Journal of Climate, 10(2), 223–244.  https://doi.org/10.1175/1520-0442(1997)010%3c0223:PNPCAA%3e2.0.CO;2.CrossRefGoogle Scholar
  9. Hsu, H.-H. (1996). Global view of the intraseasonal oscillation during northern winter. Journal of Climate, 9(10), 2386–2406.  https://doi.org/10.1175/1520-0442(1996)009%3c2386:GVOTIO%3e2.0.CO;2.CrossRefGoogle Scholar
  10. Jiang, X., Waliser, D. E., Wheeler, M. C., Jones, C., Lee, M.-I., & Schubert, S. D. (2008). Assessing the skill of an all-season statistical forecast model for the Madden–Julian oscillation. Monthly Weather Review, 136(6), 1940–1956.  https://doi.org/10.1175/2007MWR2305.1.CrossRefGoogle Scholar
  11. Jones, C., Carvalho, L. M. V., Wayne Higgins, R., Waliser, D. E., & Schemm, J.-K. E. (2004). Climatology of tropical intraseasonal convective anomalies: 1979–2002. Journal of Climate, 17(3), 523–539.  https://doi.org/10.1175/1520-0442(2004)017%3c0523:COTICA%3e2.0.CO;2.CrossRefGoogle Scholar
  12. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–471.  https://doi.org/10.1175/1520-0477(1996)077%3c0437:TNYRP%3e2.0.CO;2.CrossRefGoogle Scholar
  13. Kikuchi, K., Wang, B., & Kajikawa, Y. (2012). Bimodal representation of the tropical intraseasonal oscillation. Climate Dynamics, 38(9–10), 1989–2000.  https://doi.org/10.1007/s00382-011-1159-1.CrossRefGoogle Scholar
  14. Kiladis, G. N., Dias, J., Straub, K. H., Wheeler, M. C., Tulich, S. N., Kikuchi, K., et al. (2014). A comparison of OLR and circulation-based indices for tracking the MJO. Monthly Weather Review, 142(5), 1697–1715.  https://doi.org/10.1175/MWR-D-13-00301.1.CrossRefGoogle Scholar
  15. Kim, B.-M., Lim, G.-H., & Kim, K.-Y. (2006). A new look at the midlatitude–MJO teleconnection in the northern hemisphere winter. Quarterly Journal of the Royal Meteorological Society, 132(615), 485–503.  https://doi.org/10.1256/qj.04.87.CrossRefGoogle Scholar
  16. Lau, K. M., & Chan, P. H. (1986). Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Monthly Weather Review, 114, 1354–1367.CrossRefGoogle Scholar
  17. Lau, K. M., & Phillips, T. J. (1986). Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal time scales. Journal of Atmospheric Science, 43, 1164–1181.CrossRefGoogle Scholar
  18. Lawrence, D. M., & Webster, P. J. (2002). The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. Journal of the Atmospheric Sciences, 59(9), 1593–1606.  https://doi.org/10.1175/1520-0469(2002)059%3c1593:TBSIOR%3e2.0.CO;2.CrossRefGoogle Scholar
  19. Lee, J.-Y., Wang, B., Wheeler, M. C., Fu, X., Waliser, D. E., & Kang, I.-S. (2013). Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dynamics, 40(1–2), 493–509.  https://doi.org/10.1007/s00382-012-1544-4.CrossRefGoogle Scholar
  20. Lin, H., Brunet, G., & Derome, J. (2008). Forecast skill of the Madden–Julian oscillation in two Canadian atmospheric models. Monthly Weather Review, 136(11), 4130–4149.  https://doi.org/10.1175/2008MWR2459.1.CrossRefGoogle Scholar
  21. Lin, J. W.-B., Neelin, J. D., & Zeng, N. (2000). Maintenance of tropical intraseasonal variability: Impact of evaporation-wind feedback and midlatitude storms. Journal of the Atmospheric Sciences, 57(17), 2793–2823.  https://doi.org/10.1175/1520-0469(2000)057%3c2793:MOTIVI%3e2.0.CO;2.CrossRefGoogle Scholar
  22. Ling, J., Bauer, P., Bechtold, P., Beljaars, A., Forbes, R., Vitart, F., et al. (2014). Global versus local MJO forecast skill of the ECMWF model during DYNAMO. Monthly Weather Review, 142(6), 2228–2247.  https://doi.org/10.1175/MWR-D-13-00292.1.CrossRefGoogle Scholar
  23. Liu, P., Zhang, Q., Zhang, C., Zhu, Y., Khairoutdinov, M., Kim, H.-M., et al. (2015). A revised real-time multivariate MJO index. Monthly Weather Review, 144(2), 627–642.  https://doi.org/10.1175/MWR-D-15-0237.1.CrossRefGoogle Scholar
  24. Madden, R., & Julian, P. (1972). Description of global scale circulation cells in the Tropics with a 40–50 day period. Journal of Atmospheric Science, 29, 1109–1123.CrossRefGoogle Scholar
  25. Madden, R. A., & Julian, P. R. (1994). Observations of the 40–50-day tropical oscillation—A review. Monthly Weather Review, 122, 814–837.CrossRefGoogle Scholar
  26. Mitra, A. K., Bohra, A. K., Rajeevan, M. N., & Krishnamurti, T. N. (2009). Daily Indian precipitation analysis formed from a merge of rain-gauge data with the TRMM TMPA satellite-derived rainfall estimates. Journal of the Meteorological Society of Japan. Series II, 87A, 265–279.CrossRefGoogle Scholar
  27. Miyakawa, T., Satoh, M., Miura, H., Tomita, H., Yashiro, H., Noda, A. T., et al. (2014). Madden–Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer. Nature Communications, 5, 3769.  https://doi.org/10.1038/ncomms4769.CrossRefGoogle Scholar
  28. Ray, P., & Zhang, C. (2010). A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian oscillation. Journal of the Atmospheric Sciences, 67(2), 515–528.  https://doi.org/10.1175/2009JAS3059.1.CrossRefGoogle Scholar
  29. Roundy, P. E., & Schreck, C. J., III. (2009). A combined wave-number-frequency and time-extended EOF approach for tracking the progress of modes of large-scale organized tropical convection. Quarterly Journal of the Royal Meteorological Society, 135(638), 161–173.  https://doi.org/10.1002/qj.356.CrossRefGoogle Scholar
  30. Salby, M. L., & Hendon, H. H. (1994). Intraseasonal behavior of clouds, temperature, and motion in the tropics. Journal of the Atmospheric Sciences, 51(15), 2207–2224.  https://doi.org/10.1175/1520-0469(1994)051%3c2207:IBOCTA%3e2.0.CO;2.CrossRefGoogle Scholar
  31. Straub, K. H. (2013). MJO initiation in the real-time multivariate MJO index. Journal of Climate, 26(4), 1130–1151.  https://doi.org/10.1175/JCLI-D-12-00074.1.CrossRefGoogle Scholar
  32. Suhas, E., Neena, J. M., & Goswami, B. N. (2013). An Indian monsoon intraseasonal oscillations (MISO) index for real time monitoring and forecast verification. Climate Dynamics, 40(11–12), 2605–2616.  https://doi.org/10.1007/s00382-012-1462-5.CrossRefGoogle Scholar
  33. Ventrice, M. J., Thorncroft, C. D., Roundy, P. E. (2011). The Madden–Julian oscillation’s influence on African Easterly Waves and downstream tropical cyclogenesis. Monthly Weather Review, 139, 2704–2722.  https://doi.org/10.1175/MWR-D-10-05028.1.CrossRefGoogle Scholar
  34. Ventrice, M. J., Wheeler, M. C., Hendon, H. H., Schreck, C. J., Thorncroft, C. D., & Kiladis, G. N. (2013). A Modified multivariate Madden–Julian oscillation index using velocity potential. Monthly Weather Review, 141(12), 4197–4210.  https://doi.org/10.1175/MWR-D-12-00327.1.CrossRefGoogle Scholar
  35. Wang, B., & Rui, H. (1990). Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteorology and Atmospheric Physics, 44(1–4), 43–61.  https://doi.org/10.1007/BF01026810.CrossRefGoogle Scholar
  36. Weare, B. C., & Nasstrom, J. S. (1982). Examples of extended empirical orthogonal function analyses. Monthly Weather Review, 110(6), 481–485.  https://doi.org/10.1175/1520-0493(1982)110%3c0481:EOEEOF%3e2.0.CO;2.CrossRefGoogle Scholar
  37. Wheeler, M. C., & Hendon, H. H. (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132(8), 1917–1932.  https://doi.org/10.1175/1520-0493(2004)132%3c1917:AARMMI%3e2.0.CO;2.CrossRefGoogle Scholar
  38. Wheeler, M., & Kiladis, G. N. (1999). Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. Journal of the Atmospheric Sciences, 56(3), 374–399.  https://doi.org/10.1175/1520-0469(1999)056%3c0374:CCEWAO%3e2.0.CO;2.CrossRefGoogle Scholar
  39. Yanai, M., Chen, B., & Tung, W. (2000). The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. Journal of the Atmospheric Sciences, 57(15), 2374–2396.  https://doi.org/10.1175/1520-0469(2000)057%3c2374:TMJOOD%3e2.0.CO;2.CrossRefGoogle Scholar
  40. Yoneyama, K., Zhang, C., & Long, C. N. (2013). Tracking pulses of the Madden–Julian oscillation. Bulletin of the American Meteorological Society, 94(12), 1871–1891.  https://doi.org/10.1175/BAMS-D-12-00157.1.CrossRefGoogle Scholar
  41. Zhang, C. (2005). Madden-Julian oscillation. Reviews of Geophysics, 43(2), RG2003.  https://doi.org/10.1029/2004rg000158.CrossRefGoogle Scholar
  42. Zhang, C., Gottschalck, J., Maloney, E. D., Moncrieff, M. W., Vitart, F., Waliser, D. E., et al. (2013). Cracking the MJO nut. Geophysical Research Letters, 40(6), 1223–1230.  https://doi.org/10.1002/grl.50244.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • A. Dey
    • 1
    • 2
  • R. Chattopadhyay
    • 1
  • A. K. Sahai
    • 1
    Email author
  • R. Mandal
    • 1
  • S. Joseph
    • 1
  • R. Phani
    • 1
  • S. Abhilash
    • 1
    • 3
  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.Department of Atmospheric and Space SciencesSavitribai Phule Pune UniversityPuneIndia
  3. 3.Department of Atmospheric SciencesCochin University of Science and TechnologyCochinIndia

Personalised recommendations