Spatiotemporal Variations of Stress and Strain Parameters in the San Jacinto Fault Zone

Abstract

We analyze the background stress field around the San Jacinto fault zone (SJFZ) in Southern California with a refined inversion methodology using declustered focal mechanisms of background seismicity. Stress inversions applied to the entire fault zone, and three focus areas with high level of seismicity, provide three-dimensional distributions of the maximum horizontal compression direction (SHmax), principal stress plunges, and stress ratio \(R = (\sigma_{1} - \sigma_{2} )/(\sigma_{1} - \sigma_{3} )\). The results are compared with coseismic strain parameters derived from direct summation of earthquake potencies and b values of frequency–size event statistics. The main stress regime of the SJFZ is strike-slip, although the northwest portion near Crafton Hills displays significant transtension. The SHmax orientation rotates clockwise with increasing depth, with the largest rotation (23°) observed near Crafton Hills. The principal stress plunges have large rotations below ~ 9 km, near the depth section with highest seismicity rates and inferred brittle–ductile transition zone. The rotations produce significant deviations from Andersonian strike-slip faulting, likely generating the observed increased dip-slip faulting of relatively deep small events. The stress ratio parameters and b value results are consistent with increasing number of dip-slip faulting below ~ 9 km. The derived coseismic strain parameters are in good agreement with the stress inversion results. No large-scale stress rotations are observed across the time of the 2010 Mw 7.2 El Mayor–Cucapah earthquake. The stress ratio near the Trifurcation area of the SJFZ changes after the El Mayor–Cucapah earthquake toward transpression, but this may have been produced by local M > 5.4 event or aseismic slip.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Allam, A. A., Ben-Zion, Y., Kurzon, I., & Vernon, F. (2014). Seismic velocity structure in the Hot Springs and Trifurcation areas of the San Jacinto fault zone, California, from double-difference tomography. Geophysical Journal International, 198(2), 978–999.

    Article  Google Scholar 

  2. Amelung, F., & King, G. (1997). Large-scale tectonic deformation inferred from small earthquakes. Nature, 386(6626), 702.

    Article  Google Scholar 

  3. Amitrano, D. (2003). Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. Journal of Geophysical Research Solid Earth, 108, B1.

    Google Scholar 

  4. Bailey, I. W., Becker, T. W., & Ben-Zion, Y. (2009). Patterns of co-seismic strain computed from southern California focal mechanisms. Geophysical Journal International, 177(3), 1015–1036.

    Article  Google Scholar 

  5. Bailey, I. W., Ben-Zion, Y., Becker, T. W., & Holschneider, M. (2010). Quantifying focal mechanism heterogeneity for fault zones in central and southern California. Geophysical Journal International, 183(1), 433–450.

    Article  Google Scholar 

  6. Ben-Zion, Y. (2003). Appendix 2: Key Formulas in Earthquake Seismology. In W. H. K. Lee, H. Kanamori, P. C. Jennings, C. Kisslinger (Eds.) International handbook of earthquake and engineering seismology, Part B, 1857–1875.

  7. Ben-Zion, Y. (2008). Collective behavior of earthquakes and faults: Continuum–discrete transitions, progressive evolutionary changes, and different dynamic regimes. Reviews of Geophysics, 46(4), RG4006. https://doi.org/10.1029/2008RG000260.

    Article  Google Scholar 

  8. Bokelmann, G. H., & Beroza, G. C. (2000). Depth-dependent earthquake focal mechanism orientation: Evidence for a weak zone in the lower crust. Journal of Geophysical Research Solid Earth, 105(B9), 21683–21695.

    Article  Google Scholar 

  9. Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96(02), 109–117.

    Article  Google Scholar 

  10. Cheng, Y., Ross, Z. E., & Ben-Zion, Y. (2018). Diverse volumetric faulting patterns in the San Jacinto fault zone. Journal of Geophysical Research, 123, 5068–5081. https://doi.org/10.1029/2017JB015408.

    Google Scholar 

  11. Cooke, M. L., & Beyer, J. L. (2018). Off-fault focal mechanisms not representative of interseismic fault loading suggest deep creep on the Northern San Jacinto Fault. Geophysical Research Letters, 45(17), 8976–8984.

    Article  Google Scholar 

  12. Doser, D. I., & Kanamori, H. (1986). Depth of seismicity in the Imperial Valley region (1977–1983) and its relationship to heat flow, crustal structure and the October 15, 1979, earthquake. Journal of Geophysical Research Solid Earth, 91(B1), 675–688.

    Article  Google Scholar 

  13. Fialko, Y. (2006). Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature, 441(7096), 968–971.

    Article  Google Scholar 

  14. Fialko, Y., Rivera, L., & Kanamori, H. (2005). Estimate of differential stress in the upper crust from variations in topography and strike along the San Andreas fault. Geophysical Journal International, 160(2), 527–532.

    Article  Google Scholar 

  15. Frohlich, C. (1992). Triangle diagrams: Ternary graphs to display similarity and diversity of earthquake focal mechanisms. Physics of the Earth and Planetary Interiors, 75(1–3), 193–198.

    Article  Google Scholar 

  16. Ghisetti, F. (2000). Slip partitioning and deformation cycles close to major faults in southern California: Evidence from small-scale faults. Tectonics, 19(1), 25–43.

    Article  Google Scholar 

  17. Hardebeck, J. L., & Hauksson, E. (2001). Crustal stress field in southern California and its implications for fault mechanics. Journal of Geophysical Research B, 106(B10), 21859–21882.

    Article  Google Scholar 

  18. Hardebeck, J. L., & Michael, A. J. (2006). Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research Solid Earth, 111, (B11).

    Google Scholar 

  19. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society Series C (Applied Statistics), 28(1), 100–108.

    Google Scholar 

  20. Hauksson, E., Stock, J., Hutton, K., Yang, W., Vidal-Villegas, J. A., & Kanamori, H. (2011). The 2010 M w 7.2 El Mayor–Cucapah Earthquake Sequence, Baja California, Mexico and Southernmost California, USA: Active seismotectonics along the Mexican Pacific Margin. Pure and Applied Geophysics, 168(8–9), 1255–1277.

    Article  Google Scholar 

  21. Hauksson, E., Yang, W., & Shearer, P. M. (2012). Waveform relocated earthquake catalog for southern California (1981 to June 2011). Bulletin of the Seismological Society of America, 102(5), 2239–2244.

    Article  Google Scholar 

  22. Inbal, A., Ampuero, J. P., & Avouac, J. P. (2017). Locally and remotely triggered aseismic slip on the central San Jacinto Fault near Anza, CA, from joint inversion of seismicity and strainmeter data. Journal of Geophysical Research Solid Earth, 122(4), 3033–3061.

    Article  Google Scholar 

  23. Jennings, C. W. (1994). Fault activity map of California and adjacent areas with location and ages of recent volcanic eruptions: California Division of Mines and Geology. California Geologic Data Map Series, map, (6).

    Google Scholar 

  24. Jones, L. M. (1988). Focal mechanisms and the state of stress on the San Andreas fault in southern California. Journal of Geophysical Research Solid Earth, 93(B8), 8869–8891.

    Article  Google Scholar 

  25. Lund, B., & Townend, J. (2007). Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophysical Journal International, 170(3), 1328–1335.

    Article  Google Scholar 

  26. Martínez-Garzón, P., Ben-Zion, Y., Abolfathian, N., Kwiatek, G., & Bohnhoff, M. (2016a). A refined methodology for stress inversions of earthquake focal mechanisms. Journal of Geophysical Research, 121, 8666–8687. https://doi.org/10.1002/2016JB013493.

    Google Scholar 

  27. Martínez-Garzón, P., Kwiatek, G., Bohnhoff, M., & Dresen, G. (2016b). Impact of fluid injection on fracture reactivation at The Geysers geothermal field. Journal of Geophysical Research Solid Earth, 121(10), 7432–7449.

    Article  Google Scholar 

  28. Martínez-Garzón, P., Kwiatek, G., Ickrath, M., & Bohnhoff, M. (2014). MSATSI: A MATLAB package for stress inversion combining solid classic methodology, a new simplified user-handling, and a visualization tool. Seismological Research Letters, 85(4), 896–904.

    Article  Google Scholar 

  29. McKenzie, D. P. (1969). The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bulletin of the Seismological Society of America, 59(2), 591–601.

    Google Scholar 

  30. Meng, X., & Peng, Z. (2014). Seismicity rate changes in the Salton Sea Geothermal Field and the San Jacinto Fault Zone after the 2010 Mw 7.2 El Mayor–Cucapah earthquake. Geophysical Journal International, 197(3), 1750–1762.

    Article  Google Scholar 

  31. Michael, A. J. (1984). Determination of stress from slip data: Faults and folds. Journal of Geophysical Research Solid Earth, 89(B13), 11517–11526.

    Article  Google Scholar 

  32. Michael, A. J. (1987). Use of focal mechanisms to determine stress: A control study. Journal of Geophysical Research Solid Earth, 92(B1), 357–368.

    Article  Google Scholar 

  33. Onderdonk, N., Rockwell, T., McGill, S., & Marliyani, G. (2013). Evidence for seven surface ruptures in the past 1600 years on the Claremont fault at Mystic Lake, northern San Jacinto fault zone, California. Bulletin of the Seismological Society of America, 103(1), 519–541.

    Article  Google Scholar 

  34. Petersen, M. D., & Wesnousky, S. G. (1994). Fault slip rates and earthquake histories for active faults in southern California.

  35. Qin, L., Ben-Zion, Y., Qiu, H., Share, P.-E., Ross, Z. E., & Vernon, F. L. (2018). Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays. Geophysical Journal International, 213, 98–114. https://doi.org/10.1093/gji/ggx540.

    Article  Google Scholar 

  36. Qiu, H., Ben-Zion, Y., Ross, Z. E., Share, P.-E., & Vernon, F. L. (2017). Internal structure of the San Jacinto fault zone at Jackass Flat from data recorded by a dense linear array. Geophysical Journal International, 209, 1369–1388. https://doi.org/10.1093/gji/ggx096.

    Article  Google Scholar 

  37. Rockwell, T. K., Dawson, T. E., Ben-Horin, J. Y., & Seitz, G. (2015). A 21-event, 4,000-year history of surface ruptures in the Anza seismic gap, San Jacinto Fault, and implications for long-term earthquake production on a major plate boundary fault. Pure and Applied Geophysics, 172(5), 1143–1165.

    Article  Google Scholar 

  38. Ross, Z. E., & Ben-Zion, Y. (2013). Spatio-temporal variations of double-couple aftershock mechanisms and possible volumetric earthquake strain. Journal of Geophysical Research, 118, 2347–2355. https://doi.org/10.1002/jgrb.50202.

    Google Scholar 

  39. Ross, Z. E., Hauksson, E., & Ben-Zion, Y. (2017a). Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone. Science Advances, 3(3), e1601946.

    Article  Google Scholar 

  40. Ross, Z. E., Rollins, C., Cochran, E. S., Hauksson, E., Avouac, J.-P., & Ben-Zion, Y. (2017b). Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh. Geophysical Research Letters, 44, 8260–8267. https://doi.org/10.1002/2017GL074634.

    Article  Google Scholar 

  41. Salisbury, J. B., Rockwell, T. K., Middleton, T. J., & Hudnut, K. W. (2012). LiDAR and field observations of slip distribution for the most recent surface ruptures along the central San Jacinto fault. Bulletin of the Seismological Society of America, 102(2), 598–619.

    Article  Google Scholar 

  42. Scholz, C. H. (2002). The mechanics of earthquakes and faulting. Cambridge: Cambridge University Press.

    Google Scholar 

  43. Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399–1402.

    Article  Google Scholar 

  44. Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437(7058), 539.

    Article  Google Scholar 

  45. Seber, G. A. F. (1984). Multivariate analysis of variance and covariance. Multivariate Observations, 1984, 433–495.

    Article  Google Scholar 

  46. Spada, M., Tormann, T., Wiemer, S., & Enescu, B. (2013). Generic dependence of the frequency size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophysical Research Letters, 40(4), 709–714.

    Article  Google Scholar 

  47. Townend, J., & Zoback, M. D. (2001). Implications of earthquake focal mechanisms for the frictional strength of the San Andreas fault system. Geological Society London Special Publications, 186(1), 13–21.

    Article  Google Scholar 

  48. Townend, J., & Zoback, M. D. (2004). Regional tectonic stress near the San Andreas fault in central and southern California. Geophysical Research Letters, 31, 15.

    Article  Google Scholar 

  49. Twiss, R. J., & Unruh, J. R. (1998). Analysis of fault slip inversions: Do they constrain stress or strain rate? Journal of Geophysical Research Solid Earth, 103(B6), 12205–12222.

    Article  Google Scholar 

  50. Vavryčuk, V. (2011). Principal earthquakes: Theory and observations from the 2008 West Bohemia swarm. Earth and Planetary Science Letters, 305(3–4), 290–296.

    Article  Google Scholar 

  51. Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1), 69–77.

    Article  Google Scholar 

  52. Vavryčuk, V. (2015). Earthquake mechanisms and stress field. In M. Beer, et al. (Eds.), Encyclopedia of earthquake engineering (pp. 728–746). Berlin: Springer.

    Google Scholar 

  53. Wallace, R. E. (1951). Geometry of shearing stress and relation to faulting. The Journal of Geology, 59(2), 118–130.

    Article  Google Scholar 

  54. Wdowinski, S. (2009). Deep creep as a cause for the excess seismicity along the San Jacinto fault. Nature Geoscience, 2(12), 882–885.

    Article  Google Scholar 

  55. Wesnousky, S. G. (1986). Earthquakes, Quaternary faults, and seismic hazard in California. Journal of Geophysical Research Solid Earth, 91(B12), 12587–12631.

    Article  Google Scholar 

  56. Wesson, R. L., & Boyd, O. S. (2007). Stress before and after the 2002 Denali fault earthquake. Geophysical Research Letters, 34, 7.

    Article  Google Scholar 

  57. Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859–869.

    Article  Google Scholar 

  58. Yang, W., & Hauksson, E. (2013). The tectonic crustal stress field and style of faulting along the Pacific North America Plate boundary in Southern California. Geophysical Journal International, 194(1), 100–117.

    Article  Google Scholar 

  59. Yang, W., Hauksson, E., & Shearer, P. M. (2012). Computing a large refined catalog of focal mechanisms for southern California (1981–2010): Temporal stability of the style of faulting. Bulletin of the Seismological Society of America, 102(3), 1179–1194.

    Article  Google Scholar 

  60. Zaliapin, I., & Ben-Zion, Y. (2013). Earthquake clusters in southern California I: Identification and stability. Journal of Geophysical Research Solid Earth, 118(6), 2847–2864.

    Article  Google Scholar 

  61. Zoback, M. L. (1992). First- and second-order patterns of stress in the lithosphere: The World Stress Map Project. Journal of Geophysical Research Solid Earth, 97(B8), 11703–11728.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Southern California Earthquake Center (based on NSF Cooperative Agreement EAR-1600087 and USGS Cooperative Agreement G17AC00047). P.M.-G. acknowledges funding from the Helmholtz Association under the Helmholtz Postdoc Programme and the Helmholtz Young Investigators Group SAIDAN. The manuscript benefited from useful comments by two anonymous referees.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Niloufar Abolfathian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 51047 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abolfathian, N., Martínez-Garzón, P. & Ben-Zion, Y. Spatiotemporal Variations of Stress and Strain Parameters in the San Jacinto Fault Zone. Pure Appl. Geophys. 176, 1145–1168 (2019). https://doi.org/10.1007/s00024-018-2055-y

Download citation

Keywords

  • San Jacinto fault zone
  • stress inversion
  • coseismic strain
  • b value
  • spatiotemporal stress changes
  • depth variations of stress parameters