Advertisement

Pure and Applied Geophysics

, Volume 176, Issue 4, pp 1717–1730 | Cite as

A New Second Order Absorbing Boundary Layer Formulation for Anisotropic-Elastic Wavefield Simulation

  • Junxiao LiEmail author
  • Kristopher A. Innanen
  • Bing Wang
Article
  • 132 Downloads

Abstract

The hybrid perfectly matched layer (H-PML) approach to boundary absorption, a combination of convolutional and multiaxial perfectly matched layer (C-PML and M-PML) approaches, is extended to simulate second-order displacement-stress elastic wave equations. The displacement components instead of the velocity components can be directly updated, which can further be used in elastic full waveform inversion. A general stability condition for the second-order displacement-stress elastic wave equations is also proposed. The C-PML and H-PML simulation that results in isotropic and anisotropic media are compared. H-PML is capable of absorbing boundary reflections in both isotropic and anisotropic media, but C-PML suffers severely from the boundary reflections in anisotropic media. The H-PML simulation results for both first- and second-order elastic wave equations show its efficiency in boundary reflections suppression. The computational cost comparison between C-PML and H-PML also demonstrated that H-PML needs smaller computational volumes than C-PML for suppressing the same level of boundary reflections, which is more suitably applied in anisotropic full waveform inversion to reduce the computational volume.

Keywords

Hybrid perfectly matched layer Second order elastic wave equations Stability condition 

Notes

Acknowledgements

The authors thank the sponsors of CREWES for continued support. This work was funded by CREWES industrial sponsors, NSERC (Natural Science and Engineering Research Council of Canada) through the Grant CRDPJ 461179-13, and by the Canada First Research Excellence Fund.

References

  1. Berenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185–200.CrossRefGoogle Scholar
  2. Bérenger, J.-P. (2002). Application of the CFS PML to the absorption of evanescent waves in waveguides. IEEE Microwave and Wireless Components Letters, 12(6), 218–220.CrossRefGoogle Scholar
  3. Chen, H., Yin, X., Qu, S., & Zhang, G. (2014). AVAZ inversion for fracture weakness parameters based on the rock physics model. Journal of Geophysics and Engineering, 11(6), 065007.CrossRefGoogle Scholar
  4. Chen, H., Yin, X., Gao, J., & Zhang, G. (2015). Seismic inversion for underground fractures detection based on effective anisotropy and fluid substitution. Science China Earth Sciences, 58(5), 805–814.CrossRefGoogle Scholar
  5. Collino, F., & Monk, P. B. (1998). Optimizing the perfectly matched layer. Computer methods in applied mechanics and engineering, 164(1–2), 157–171.CrossRefGoogle Scholar
  6. Collino, F., & Tsogka, C. (2001). Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66(1), 294–307.CrossRefGoogle Scholar
  7. Dmitriev, M., & Lisitsa, V. (2011). Application of M-PML reflectionless boundary conditions to the numerical simulation of wave propagation in anisotropic media.Part I: Reflectivity. Numerical Analysis and Applications, 4(4), 271–280.CrossRefGoogle Scholar
  8. Engquist, B., & Majda, A. (1977). Absorbing boundary conditions for numerical simulation of waves. Proceedings of the National Academy of Sciences, 74(5), 1765–1766.CrossRefGoogle Scholar
  9. Festa, G., & Vilotte, J.-P. (2005). The Newmark scheme as velocity-stress time-staggering: An efficient PML implementation for spectral element simulations of elastodynamics. Geophysical Journal International, 161(3), 789–812.CrossRefGoogle Scholar
  10. Gauthier, O., Virieux, J., & Tarantola, A. (1986). Two-dimensional nonlinear inversion of seismic waveforms: Numerical results. Geophysics, 51(7), 1387–1403.CrossRefGoogle Scholar
  11. Komatitsch, D., & Martin, R. (2007). An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics, 72(5), SM155–SM167.CrossRefGoogle Scholar
  12. Komatitsch, D., & Tromp, J. (2003). A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophysical Journal International, 154(1), 146–1539.CrossRefGoogle Scholar
  13. Kuzuoglu, M., & Mittra, R. (1996). Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. Microwave and Guided Wave Letters, IEEE, 6(12), 447–449.CrossRefGoogle Scholar
  14. Li, J., Innanen, K. A., Tao, G., Zhang, K., & Lines, L. (2017). Wavefield simulation of 3D borehole dipole radiation. Geophysics, 82(3), D155–D169.CrossRefGoogle Scholar
  15. Li, Y., & Matar, O. B. (2010). Convolutional perfectly matched layer for elastic second-order wave equation. The Journal of the Acoustical Society of America, 127(3), 1318–1327.CrossRefGoogle Scholar
  16. Liu, Y.-S., Liu, S.-L., Zhang, M.-G., & Ma, D.-T. (2003). An improved perfectly matched layer absorbing boundary condition for second order elastic wave equation. Progress in Geophysics, 27, 2113–2122.Google Scholar
  17. Meza-Fajardo, K. C., & Papageorgiou, A. S. (2008). A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: Stability analysis. Bulletin of the Seismological Society of America, 98(4), 1811–1836.CrossRefGoogle Scholar
  18. Moczo, P., Kristek, J., & Ladislav, H. (2000). 3D fourth-order staggered-grid finite-difference schemes: Stability and grid dispersion. Bulletin of the Seismological Society of America, 90(3), 587–603.CrossRefGoogle Scholar
  19. Mora, P. (1987). Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics, 52(9), 1211–1228.CrossRefGoogle Scholar
  20. Pratt, R. G. (1999). Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model. Geophysics, 64(3), 888–901.CrossRefGoogle Scholar
  21. Pan, W., Innanen, K. A., Margrave, G. F., Fehler, M. C., Fang, X., & Li, J. (2016). Estimation of elastic constants for HTI media using Gauss-Newton and full-Newton multiparameter full-waveform inversion. Geophysics, 81(5), R275–R291.CrossRefGoogle Scholar
  22. Pei, Z., Fu, L.-Y., Sun, W., Jiang, T., & Zhou, B. (2012). Anisotropic finite-difference algorithm for modeling elastic wave propagation in fractured coalbeds. Geophysics, 77(1), C13–C26.CrossRefGoogle Scholar
  23. Ping, P., Zhang, Y., & Xu, Y. (2000). A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second-order equations. Journal of Applied Geophysics, 101, 124–135.CrossRefGoogle Scholar
  24. Pinton, G. F., Dahl, J., Rosenzweig, S., & Trahey, G. E. (2009). A heterogeneous nonlinear attenuating full-wave model of ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56(3), 474–488.CrossRefGoogle Scholar
  25. Roden, J. A., & Gedney, S. D. (2000). An efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave and Optical Technology Letters, 27(3), 334–338.CrossRefGoogle Scholar
  26. Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 1259–1266.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Geoscience, CREWES ProjectUniversity of CalgaryCalgaryCanada
  2. 2.Department of GeoscienceChina university of PetroleumBeijingChina

Personalised recommendations