Pure and Applied Geophysics

, Volume 176, Issue 4, pp 1503–1530 | Cite as

Probabilistic Seismic Hazard Assessment for the Arabian Peninsula

  • Yousuf Al-shijbi
  • I. El-Hussain
  • A. Deif
  • Abdulrahman Al-Kalbani
  • Adel M. E. MohamedEmail author


A seismic hazard evaluation in terms of 5% damped peak ground acceleration and spectral acceleration was carried out for the Arabian Peninsula using a probabilistic approach. For this purpose, a revised earthquake catalogue extending from 19 AD to 2015 AD was utilized, including all available earthquakes with magnitude greater than 4.0. The seismic hazard assessment was conducted in the framework of the logic-tree approach to take into account epistemic uncertainties associated with input parameters [seismic source model, recurrence parameters, maximum magnitude, and ground-motion prediction equations (GMPEs)]. A novel seismic source model consisting of 57 seismic zones is proposed as an alternative included in the modeled logic tree. The recurrence parameters were computed mainly using the doubly bounded exponential distribution. Horizontal ground motion in terms of geometric mean acceleration was computed for different spectral periods utilizing GMPEs borrowed from tectonic environments comparable to those surrounding the Arabian Peninsula. The 5% damped seismic hazard values at bedrock conditions were calculated for return periods of 475, 975, and 2475 years. Additionally, uniform hazard spectra for important population centers in the Arabian Peninsula are provided. The highest seismic hazard values were observed along the Zagros, the East Anatolian Fault, and the Gulf of Aqaba–Dead Sea Fault. The provided maps could be used to design the Unified Gulf Building Code.


Arabian Plate seismic hazard building code 


  1. Akkar, S., & Bommer, J. J. (2010). Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East. Seismological Research Letters, 81, 195–206.CrossRefGoogle Scholar
  2. Aldama, B. (2009). An exploratory study of parameter sensitivity, representation of results and extension of PSHA: case study-United Arab Emirates. PhD thesis, Imperial College London.Google Scholar
  3. Aldama, B., Bommer, J. J., Fenton, C. H., & Staford, P. J. (2009). Probabilistic seismic hazard analysis for rock sites in the cities of Abu Dhabi, Dubai and Ra’s Al Khaymah, United Arab Emirates. Georisk, 3, 1–29.Google Scholar
  4. Al-Haddad, M., Siddiqi, G. H., Al-Zaid, R., Arafah, A., Necioglu, A., & Turkelli, N. (1992). Seismic hazard and design criteria for Saudi Arabia. In Earthquake engineering, tenth world conference, Balkem, Rotterdam, ISBN:9054100605.Google Scholar
  5. Al-Haddad, M., Siddiqi, G. H., Al-Zaid, R., Arafah, A., Necioglu, A., & Turkelli, N. (1994). A basis for evaluation of seismic hazard and design criteria for Saudi Arabia. Earthquake Spectra, 10, 231–258.CrossRefGoogle Scholar
  6. Allen, M., Jackson, J. A., & Walker, R. (2004). Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23, TC2008.Google Scholar
  7. Ambraseys, N. N., & Jackson, J. A. (1998). Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophysical Journal International, 133, 390–406.CrossRefGoogle Scholar
  8. Ambraseys, N. N., & Melville, C. P. (1982). A history of Persian earthquakes. Cambridge: Cambridge University Press.Google Scholar
  9. ArRajehi, A., McClusky, S., Reilinger, R., Daoud, M., Alchalbi, A., Ergintav, S., et al. (2010). Geodetic constraints on present-day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting. Tectonics, 29, TC3011.CrossRefGoogle Scholar
  10. ASC. (2003). 1945—Off the Makran Coast (Balochistan), Pakistan, M w 8.0. Amateur Seismic Center,
  11. Atkinson, G. M., & Boore, D. M. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bulletin of Seismological Society of America, 93, 1703–1729.CrossRefGoogle Scholar
  12. Atkinson, G. M., & Boore, D. M. (2006). Earthquake ground-motion prediction equations for Eastern North America. Bulletin of Seismological Society of America, 96, 2181–2205.CrossRefGoogle Scholar
  13. Babiker, N., Mula, A., & El-Hadidy, S. (2015). A unified M w-based earthquake catalogue and seismic source zones for the Red Sea. Journal of African Earth Sciences, 109, 168–176.CrossRefGoogle Scholar
  14. Bartov, Y., Steinitz, G., Eyal, M., & Eyal, Y. (1980). Sinistral movement along the Gulf of Aqaba—its age and relation to the opening of the Red Sea. Nature, 285, 220–222.CrossRefGoogle Scholar
  15. Bayrak, Y., Öztürk, A. S., Çınara, H., Kalafat, D., Tsapanos, T. M., Koravos, G Ch., et al. (2009). Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey. Engineering Geology, 105, 200–210.CrossRefGoogle Scholar
  16. Bender, B. K., & Perkins, D. M. (1982). SEISRISK III: A computer program for seismic hazard estimation. U.S. Geological Survey Open File Report 82–293.Google Scholar
  17. Berberian, M. (1995). Master ‘blind’ thrust faults hidden under the Zagros folds, active basement tectonics and surface morphotectonics. Tectonophysics, 241, 193–224.CrossRefGoogle Scholar
  18. Beyer, K., & Bommer, J. J. (2006). Relationships between median values and between aleatory variabilities for different definitions of the horizontal component of motion. Bulletin of Seismological Society of America, 96, 1512–1522. (Erratum (2007) 97, 1769)CrossRefGoogle Scholar
  19. Bommer, J. J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., & Abrahamson, N. A. (2005). On the use of logic-trees for ground-motion prediction equations in seismic hazard analysis. Bulletin of Seismological Society of America, 95, 377–389.CrossRefGoogle Scholar
  20. Bulut, F., Marco, B., Tuna, E., Janssen, C., Kılıç, T., & Dresen, G. (2012). The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations. Journal of Geophysical Research, 117, B07304.CrossRefGoogle Scholar
  21. Burkhard, M., & Grunthal, G. (2009). Seismic source zone characterization for the seismic hazard assessment project PEGASOS by the Expert Group 2 (EG 1b). Swiss Journal of Geosciences, 102, 149–188.CrossRefGoogle Scholar
  22. Campbell, K. (2003). Prediction of strong ground-motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in Eastern North America. Bulletin of Seismological Society of America, 93, 1012–1033.CrossRefGoogle Scholar
  23. Chiou, B. S., & Youngs, R. R. (2008). An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 24, 173–215.CrossRefGoogle Scholar
  24. Coleman, R. G. (1993). Geologic evolution of the Red Sea. Oxford monographs on geology and geophysics (Vol. 24). Oxford: Oxford University Press.Google Scholar
  25. Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of Seismological Society of America, 18, 1583–1606.Google Scholar
  26. Cornell, C. A., & Vanmarcke, E. H. (1969). The major influences on seismic risk. In Proceedings of the fourth world conference of earthquake engineering, 1, Santiago, Chile, 69–83.Google Scholar
  27. Cosentino, P., Ficarra, V., & Luzio, D. (1977). Truncated exponential frequency-magnitude relationship in earthquake statistics. Bulletin of the Seismological Society of America, 67, 1615–1623.Google Scholar
  28. Cramer, H. (1961). Mathematical methods of statistics (2nd ed.). Princeton: Princeton University Press.Google Scholar
  29. Danciu, L., Sesetyan, K., Demircioglu, M., Gulen, L., Zare, M., Basili, R., et al. (2017). The 2014 earthquake model of the middle east: seismogenic sources. Bulletin of Earthquake Engineering, 22, 22. Scholar
  30. Deif, A., Abou-Elenean, K., El-Hadidy, M., Tealeb, A., & Mohamed, A. (2009). Probabilistic seismic hazard maps for Sinai Peninsula, Egypt. Journal of Geophysics and Engineering, 6, 288–297.CrossRefGoogle Scholar
  31. Deif, A., Al-Shijbi, Y., El-Hussain, I., Ezzelarab, M., & Mohamed, A. M. E. (2017). Compiling an earthquake catalogue for the Arabian Plate, Western Asia. Journal of Asian Earth Sciences, 147, 345–375.CrossRefGoogle Scholar
  32. Deif, A., & El-Hussain, I. (2012). Seismic moment rate and earthquake mean recurrence interval in the major tectonic boundaries around Oman. Journal of Geophysics and Engineering, 9, 773–783.CrossRefGoogle Scholar
  33. Delavaud, E., Cotton, F., Akkar, S., Scherbaum, F., Danciu, L., Beauval, C., et al. (2012). Towards a ground-motion logic-tree for probabilistic seismic hazard assessment in Europe. Journal of Seismology, 16, 451–473.CrossRefGoogle Scholar
  34. DeMets, C. (2008). Arabia’s slow dance with India, Nature Geoscience 1, 10–11, der Schweiz. Ph.D. thesis, ETH-Zurich.Google Scholar
  35. Dong, W. M., Bao, A. B., & Shah, H. C. (1984). Use of maximum entropy principle in earthquake recurrence relationships. Bulletin of the Seismological Society of America, 74, 725–737.Google Scholar
  36. Douglas, J., Akkar, S., Ameri, G., Bard, P. Y., Bindi, D., Bommer, J., et al. (2014). Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East. Bulletin of Earthquake Engineering, Springer Verlag, 12, 341–358.CrossRefGoogle Scholar
  37. El-Hussain, I., Al-Shijbi, Y., Deif, A., Mohamed, A. M. E., & Ezzelarab, M. (2018). Developing a seismic source model for the Arabian Plate. Arabian Journal of Geosciences, 11, 435. Scholar
  38. El-Hussain, I., Deif, A., Al-Jabri, K., Toksoz, N., El-Hady, S., Al-Hashmi, S., et al. (2012). Probabilistic seismic hazard maps for Sultanate of Oman. Natural Hazards, 64, 173–210.CrossRefGoogle Scholar
  39. Erdik, M., Demircioglu, B., Sesetyan, K., & Durukal, E. (2008). Probabilistic seismic hazard assessment for Dubai. Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, Department of Earthquake Engineering, unpublished report.Google Scholar
  40. Farhoudi, G., & Karig, D. E. (1977). Makran of Iran and Pakistan as an active arc system. Geology, 5, 664–668.CrossRefGoogle Scholar
  41. Fenton, C. H., Adams, J., & Halchuk, S. (2006). Seismic hazard assessment for radioactive waste disposal sites in regions of low seismic activity. Geotechnical and Geological Engineering, 24, 579–592.CrossRefGoogle Scholar
  42. Fournier, M., Chamot-Rooke, N., Petit, C., Fabbri, O., Huchon, P., Maillot, B., et al. (2008). In-situ evidence for dextral active motion at the Arabia-India plate boundary. Nature Geoscience, Nature Publishing Group, 1, 54–58.CrossRefGoogle Scholar
  43. Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of Seismological Society of America, 64, 1363–1367.Google Scholar
  44. Girdler, R. W., & Underwood, M. (1985). The evolution of early oceanic lithosphere in the southern Red Sea. Tectonophysics, 116, 95–108.CrossRefGoogle Scholar
  45. Grunthal, G., Bosse, C., Sellami, S., Mayer-Rosa, D., & Giardini, D. (1999). Compilation of the GSHAP regional seismic hazard map for Europe, Africa and the Middle East. Annali di Geofisica, 42, 1215–1223.Google Scholar
  46. Grunthal, G., & Wahlstrom, R. (2012). The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. Journal of Seismology, 16, 535–570.CrossRefGoogle Scholar
  47. Gutenberg, B., & Richter, C. F. (1956). Magnitude and energy of earthquakes. Annali di Geofisica, 9, 1–15.Google Scholar
  48. Haghipour, A., Chorashi, M., & Kadjar, M. (1984). Explanatory text of the seismotectonic map of Iran, Afghanistan and Pakistan, Commission for geological map of world-UNESCO. Tehran: Geological Survey of Iran.Google Scholar
  49. Hamdache, M., Peláez, A. J., Talbi, A., Mobarki, M., & López Casado, C. L. (2012). Ground-motion hazard values for Northern Algeria. Pure and Applied Geophysics, 169, 711–723. Scholar
  50. Hessami, K., Jamali, F., & Tabassi, H. (2003). Major active faults in Iran. Ministry of Science, Research and Technology, International Institute of Earthquake Engineering and Seismology (IIEES), 1:250000 scale map.Google Scholar
  51. Huijer, C., Harajli, M., & Sadek, S. (2016). Re-evaluation and updating of the seismic hazard of Lebanon. Journal of Seismology, 20, 233–250.CrossRefGoogle Scholar
  52. Johnson, P. R. (1998). Tectonic map of Saudi Arabia and adjacent areas. Deputy Ministry for Mineral Resources, USGS TR-98-3, Saudi Arabia.Google Scholar
  53. Kijko, A. (2004). Estimation of the maximum earthquake magnitude M max. Pure and Applied Geophysics, 161, 1655–1681.CrossRefGoogle Scholar
  54. Kijko, A., & Sellevoll, M. A. (1992). Estimation of earthquake hazard parameters from incomplete data files Part II: Incorporation of magnitude heterogeneity. Bulletin of the Seismological Society of America, 82(1), 120–134.Google Scholar
  55. Kijko, A., & Singh, M. (2011). Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica, 59(4), 674–700. Scholar
  56. Lloyd’s City Risk Index (2015). Middle East cities [online].
  57. McGuire, R. K. (1978). FRISK: Computer program for seismic risk analysis using faults as earthquake sources. U.S. Geological Survey Open-File Report 78-1007.Google Scholar
  58. Musson, R. M. W. (2009). Subduction in the Western Makran: the historian’s contribution. Journal of Geological Society, London, 166, 387–391.CrossRefGoogle Scholar
  59. Onur, T., Gok, R., Abdulnaby, W., Shakir, A., Mahdi, H., Numan, N., Al-Shukri, H., Chalib, H., Ameen, T., & Abd, N. (2016). Probabilistic seismic hazard assessment for Iraq. Lawrence Livermore National Laboratory, LLNL-TR-691152.Google Scholar
  60. Palano, M., Paola Imprescia, P., & Gresta, S. (2013). Current stress and strain-rate fields across the Dead Sea fault system: constraints from seismological data and GPS observations. Earth Planetary Science Letters, 369–370, 305–316.CrossRefGoogle Scholar
  61. Pararas-Carayannis, G. (2004). Seismo-dynamics of compressional tectonic collision-potential for tsunami genesis along boundaries of the Indian, Eurasian and Arabian plates. In Abstract submitted to the International Conference HAZARDS, Hyderabad, India, 2–4 Dec. 2004.Google Scholar
  62. Pascucci, V., Free, M. W., & Lubkowski, Z. A. (2008). Seismic hazard and seismic design requirements for the Arabian Peninsula. (Online). In The 14th world conference on earthquake engineering, October 12–17, 2008, Beijing, China.Google Scholar
  63. Peláez, A. J., Hamdache, M., & López Casado, C. L. (2006). Seismic hazard in terms of spectral accelerations and uniform hazard spectra in Northern Algeria. Pure and Applied Geophysics, 163, 119–135. Scholar
  64. Rasul, N. M. A., Stewart, I. C. F., & Nawab, Z. A. (2015). Introduction to the Red Sea: Its origin, structure, and environment. In N. M. A. Rasul & C. F. Stewart (Eds.), The Red Sea (pp. 1–28). Berlin, Heidelberg: Springer.Google Scholar
  65. Salamon, A., Avraham, H., Garfunkel, Z., & Ron, H. (2003). Seismotectonics of Sinai subplate-Eastern Mediterranean region. Geophysical Journal International, 155, 149–173.CrossRefGoogle Scholar
  66. Sawires, R., Peláez, J. A., Fat-Helbary, R. E., & Ibrahim, H. A. (2016). Updated probabilistic seismic hazard values for Egypt. Bulletin of the Seismological Society of America, 106(4), 1788–1801. Scholar
  67. Sneh, A. (1996). The Dead Sea Rift: Lateral displacement and down faulting phases. Tectonophysics, 263, 277–292.CrossRefGoogle Scholar
  68. Stoneley, R. (1974). Evolution of the continental margins bounding a former Tethys. In C. A. Burk & C. L. Drake (Eds.), The geology of continental margins (pp. 889–903). New York: Springer.CrossRefGoogle Scholar
  69. Tavakoli, B., & Ghafori-Ashtiany, M. (1999). Seismic hazard assessment of Iran. Annali di Geofisica, 42, 1013–1021.Google Scholar
  70. Uhrhammer, R. (1986). Characteristics of northern and southern California seismicity. Earthquake Notes, 113, 57–61.Google Scholar
  71. Vermeulen, P., & Kijko, A. (2017). More statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica. Scholar
  72. Vernant, P. H., Nilforoushan, F., Hatzfeld, D., Abassi, M. R., Vigny, C., Masson, F., et al. (2004). Present-day crustal deformation and plate kinematics in Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157, 381–398.CrossRefGoogle Scholar
  73. Weichert, D. H. (1980). Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bulletin of Seismological Society of America, 70, 1337–1346.Google Scholar
  74. Yilmaz, N., & Yucemen, S. M. (2015). Sensitivity of seismic hazard results to alternative seismic source and magnitude-recurrence models: a case study for Jordan. Geodinamica Acta, 27, 189–202.CrossRefGoogle Scholar
  75. Youngs, R. R., Chiou, S. J., Silva, W. J., & Humphrey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological Research Letters, 68, 58–73.CrossRefGoogle Scholar
  76. Zahran, H. M., Sokolov, V., Roobol, J., Stewart, I. C. F., El-Hadidy, S. Y., & El-Hadidy, M. (2016). On the development of a seismic source zonation model for seismic hazard assessment in western Saudi Arabia. Journal of Seismology, 20, 747–769.CrossRefGoogle Scholar
  77. Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., et al. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96, 898–913.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yousuf Al-shijbi
    • 1
  • I. El-Hussain
    • 1
  • A. Deif
    • 1
    • 2
  • Abdulrahman Al-Kalbani
    • 1
  • Adel M. E. Mohamed
    • 1
    • 2
    Email author
  1. 1.Earthquake Monitoring CenterSultan Qaboos UniversityMuscatOman
  2. 2.National Research Institute of Astronomy and GeophysicsHelwanEgypt

Personalised recommendations