Skip to main content
Log in

Application of Transient Electromagnetic and Audio-Magnetotelluric Methods for Imaging the Monte Real Aquifer in Portugal

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Fifty transient electromagnetic (TEM) and 15 audio-magnetotelluric (AMT) soundings were carried out in the west central part of Portugal over an area of approximately 40 km2 to characterize the geological formations associated with the Monte Real aquifer in order to (1) assess the spatial extent of the aquifer, (2) detect the zones of higher water productivity and (3) evaluate the aquifer salinization risk. The dimensionality and strike direction of the AMT profiles were studied using phase tensor analysis and the AMT data was inverted using a two-dimensional (2D) nonlinear conjugate-gradient algorithm. In addition, the TEM soundings were inverted using a one-dimensional (1D) Levenberg–Marquardt technique in order to obtain 1D layered-earth resistivity models. The TEM results reveal that the aquifer is not uniform in the study area; a more resistive zone is evident in the north and northeast of the investigated area where we expect to have higher productivity. On the other hand, the AMT models suggest that the aquifer basement is probably located at a depth of more than 800 m. Based on the results of this investigation, no traces of saltwater intrusion were found for the Monte Real aquifer. Therefore, we assume that the risk of saltwater intrusion is small in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdalla, O. A. E., Ali, M., Al-Higgi, K., Al-Zidi, H., El-Hussain, I., & Al-Hinai, S. (2010). Rate of seawater intrusion estimated by geophysical methods in an arid area, Al Khabourah, Oman. Hydrogeology Journal, 18, 1437–1445. https://doi.org/10.1007/s10040-010-0606-0.

    Article  Google Scholar 

  • AEMR (Applied Electromagnetic Research). (2007). TEM-Researcher manual, version 7. The Netherlands, p 49

  • Almeida, C., Mendonça, J. J. L., Jesus, M. R., & Gomes, A. J. (2000). Sistemas aquíferos de Portugal Continental (p. 661). Lisboa: Instituto da Água, Technical Report, CD-ROM.

    Google Scholar 

  • Arango, C., Marcuello, A., Ledo, J., & Queralt, P. (2009). 3D magnetotelluric characterization of the geothermal anomaly in the Llucmajor aquifer system (Majorca, Spain). Journal of Applied Geophysics, 68(4), 479–488. https://doi.org/10.1016/j.jappgeo.2008.05.006.

    Article  Google Scholar 

  • Bauer-Gottwein, P., Gondwe, B. N., Christiansen, L., Herckenrath, D., Kgotlhang, L., & Zimmerman, S. (2010). Hydrogeophysical exploration of three-dimensional salinity anomalies with the time-domain electromagnetic method (TDEM). Journal of Hydrology, 380(3–4), 318–329. https://doi.org/10.1016/j.jhydrol.2009.11.007.

    Article  Google Scholar 

  • Berdichevsky, M. N. (1960). Principles of magnetoteluric profiling theory. Applied Geophysics, 28, 70–91.

    Google Scholar 

  • Berdichevsky, M. N., & Dmitriev, V. I. (1992). Magnetotelluric sounding of horizontally-uniform media (p. 250). Moscow: NEDRA Press. (in Russian).

    Google Scholar 

  • Cagniard, L. (1953). Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 18, 605–635.

    Article  Google Scholar 

  • Caldwell, T. G., Bibby, H. M., & Brown, C. (2004). The magnetotelluric phase tensor. Geophysical Journal International, 158(2), 457–469. https://doi.org/10.1111/j.1365-246x.2004.02281.x.

    Article  Google Scholar 

  • Christiansen, A. V., Auken, E., & Viezzoli, A. (2011). Quantification of modeling errors in airborne TEM caused by inaccurate system description. Geophysics, 76(1), F43–F52.

    Article  Google Scholar 

  • Commer, M., Helwig, S. L., Hordt, A., Scholl, C., & Tezkan, B. (2006). New result on the resistivity structure of Merapi volcano (Indonesia), derived from 3D restricted inversion of long-offset transient electromagnetic data. Geophysical Journal International, 142, 1–44.

    Google Scholar 

  • Commer, M., Hordt, A., Helwig, S., & Scholl, C. (2003). Three-dimensional inversion of time-domain EM data with highly constrained model complexities (pp. 114–123). Konigstein: 20 Kollokuium Elektromagnetische Tiefenforschung.

    Google Scholar 

  • Corriols, M., Ryom Nielsen, M. R., Dahlin, T., & Christensen, N. B. (2009). Aquifer investigations in the Leon-Chinandega plains, Nicaragua, using electromagnetic and electrical methods. Near Surface Geophysics, 7, 413–425.

    Article  Google Scholar 

  • Danielsen, J. E., Auken, E., Jorgensen, F., Sondergaard, V., & Sorensen, K. I. (2003). The application of the transient electromagnetic method in hydrogeophysical surveys. Journal of Applied Geophysics, 53, 181–198. https://doi.org/10.1016/j.jappgeo.2003.08.004.

    Article  Google Scholar 

  • Egbert, G. D., & Booker, J. R. (1986). Robust estimation of geomagnetic transfer functions. Geophysical Journal of the Royal Astronomical Society, 87, 173–194. https://doi.org/10.1111/j.1365-246X.1986.tb04552.x.

    Article  Google Scholar 

  • Eggenkamp, H.G.M., & Marques, J.M. (2010). Distribution and variation of geochemical signatures in mineral waters from the Portuguese mainland. In XXXVIII international association of hydrologists congress, Krakow, Poland. Extended abstracts vol. 1795–1801.

  • Eggenkamp, H. G. M., Marques, J. M., & Neves, O. (2015). A geochemical atlas of the Portuguese mineral waters. Bussum: Onderzoek en Beleving. ISBN 978-90-816059-4-6.

    Google Scholar 

  • Falgas, E., Ledo, J., Benjumea, B., Queralt, P., Marcuello, A., Teixido, T., et al. (2011). Integrating hydrogeological and geophysical methods for the characterization of a deltaic aquifer system. Surveys In Geophysics, 32, 857–873. https://doi.org/10.1007/s10712-011-9126-2.

    Article  Google Scholar 

  • Falgas, E., Ledo, J., Marceullo, A., & Queralt, P. (2009). Monitoring freshwater-seawater interface dynamics with audiomagnetotelluric data. Near Surface Geophysics, 7, 391–399. https://doi.org/10.3997/1873-0604.2009038.

    Article  Google Scholar 

  • Fitterman, D. V., & Stewart, M. T. (1986). Transient electromagnetic sounding for groundwater. Geophysics, 51, 995–1005. https://doi.org/10.1190/1.1442158.

    Article  Google Scholar 

  • Goldman, M., Gilad, D., Ronen, A., & Melloul, A. (1991). Mapping of seawater intrusion into the coastal aquifer of Israel by the time domain. Geoexploration, 28, 153–174. https://doi.org/10.1016/0016-7142(91)90046-F.

    Article  Google Scholar 

  • Goncalves, R. (2012). Hydrochemical water prediction (water quality) with transient electromagnetic soundings (TEM). Chapter 4. PhD thesis, University of Lisbon. https://goo.gl/3eSNZi.

  • Gonçalves, R., Farzamian, M., Monteiro Santos, F. A., Represas, P., Mota Gomes, A., Lobo de Pina, A. F., et al. (2017). Application of time-domain electromagnetic method in investigating saltwater intrusion of Santiago Island (Cape Verde). Pure and Applied Geophysics, 174, 4171–4182.

    Article  Google Scholar 

  • Hansen, P. C. (1998). Rank deficient and discrete Ill-posed problems, numerical aspects of linear inversion. Philadelphia: SIAM. https://doi.org/10.1137/1.9780898719697.

    Book  Google Scholar 

  • Herckenrath, D., Odlum, N., Nenna, V., Knight, R., Auken, E., & Bauer-Gottwein, P. (2013). Calibrating a salt water intrusion model with time-domain electromagnetic data. Ground Water, 51(3), 385–397. https://doi.org/10.1111/j.1745-6584.2012.00974.x.

    Google Scholar 

  • Jones, A. G., & Groom, R. W. (1993). Strike-angle determination from the magnetotelluric impedance tensor in the presence of noise and local distortion: Rotate at your peril! Geophysical Journal International, 113, 524–534. https://doi.org/10.1111/j.1365-246X.1993.tb00905.x.

    Article  Google Scholar 

  • Jupp, D. L. B., & Vozoff, K. (1975). Stable iterative methods for the inversion of geophysical data. Geophysical Journal International, 42, 957–976.

    Article  Google Scholar 

  • Kafri, U., & Goldman, M. (2005). The use of the time domain electromagnetic method to delineate saline groundwater in granular and carbonate aquifers and to evaluate their porosity. Journal of Applied Geophysics, 57, 167–178. https://doi.org/10.1016/j.jappgeo.2004.09.001.

    Article  Google Scholar 

  • Kalscheuer, T., Blake, S., Podgorski, J. E., Wagner, F., Green, A. G., Muller, M., et al. (2015). Joint inversions of three types of electromagnetic data explicitly constrained by seismic observations: Results from the central Okavango Delta, Botswana. Geophysical Journal International, 202(3), 1429–1452. https://doi.org/10.1093/gji/ggv184.

    Article  Google Scholar 

  • Khalil, M. A., Abbas, A. M., Santos, F. M., Masoud, U., & Salah, H. (2012). Application of VES and TDEM techniques to investigate sea water intrusion in Sidi Abdel Rhaman area, northwestern coast of Egypt. Arabian Journal of Geosciences, 6(8), 3093–3101. https://doi.org/10.1007/s12517-012-0564-z.

    Article  Google Scholar 

  • Lopes, F. C., Pereira, A., & Mantas, V. M. (2012). Mapping of salt structures and related fault lineaments based on remote-sensing and gravimetric data. The case of the Monte Real salt wall (onshore west-central Portugal). AAPG Bulletin, 96(4), 615–634. https://doi.org/10.1306/08101111033.

    Article  Google Scholar 

  • Martínez-Moreno, F. J., Monteiro-Santos, F. A., Bernardo, I., Farzamian, M., Nascimento, C., Fernandes, J., et al. (2017). Identifying seawater intrusion in coastal areas by means of 1D and quasi-2D joint inversion of TDEM and VES data. Journal of Hydrology, 552, 609–619. https://doi.org/10.1016/j.jhydrol.2017.07.026.

    Article  Google Scholar 

  • Meier, P., Kalscheuer, T., Podgorski, J. E., Kgotlhang, L., Green, A. G., Green-halgh, S., et al. (2014). Hydrogeophysical investigations in the western and north-central Okavango Delta (Botswana) based on helicopter and ground-based transient electromagnetic data and electrical resistance tomography. Geophysics, 79(5), B201–B211. https://doi.org/10.1111/j.1365-246x.1984.tb02230.x.

    Article  Google Scholar 

  • Meju, M. A. (1996). Joint inversion of TEM and distorted MT soundings: Some effective practical considerations. Geophysics, 61, 56–65. https://doi.org/10.1190/1.1443956.

    Article  Google Scholar 

  • Meju, M. A., Fontes, S. L., Ulugergeli, E. U., La Terra, E. F., Germano, C. R., & Carvalho, R. M. (2001). A joint TEM-HLEM geophysical approach to borehole siting in deeply weathered granite terrains. Ground Water, 39, 554–567. https://doi.org/10.1111/j.1745-6584.2001.tb02344.x.

    Article  Google Scholar 

  • Mills, T., Hoekstra, P., Blohm, M., & Evans, L. (1988). Time domain electromagnetic soundings for mapping sea-water intrusion in Monterey County, California. Ground Water, 26, 771–782. https://doi.org/10.1111/j.1745-6584.1988.tb00428.x.

    Article  Google Scholar 

  • Mitsuhata, Y., Uchida, T., Matsuo, K., Marui, A., & Kusunose, K. (2006). Various-scale electromagnetic investigations of high-salinity zones in a coastal plain. Geophysics, 71(6), B167–B173. https://doi.org/10.1190/1.2335658.

    Article  Google Scholar 

  • Nabighian, M., & Macnae, J. (1991). The magnetotelluric method. In M. N. Nabighian (Ed.), Electromagnetic methods in applied geophysics (Vol. 2, pp. 427–520). Tulsa: Society of Exploration Geophysicists Press. https://doi.org/10.1190/1.9781560802686.

    Chapter  Google Scholar 

  • Nenna, V., Herckenrath, D., Knight, R., Odlum, N., & McPhee, D. (2013). Application and evaluation of electromagnetic methods for imaging saltwater intrusion in coastal aquifers: Seaside Groundwater Basin, California. Geophysics, 78(2), B77–B88. https://doi.org/10.1190/geo2012-0004.1.

    Article  Google Scholar 

  • Oldenburg, D. W., & Li, Y. (1999). Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 64, 403–416.

    Article  Google Scholar 

  • Paine, J. G. (2003). Determining salinization extent, identifying salinity sources, and estimating chloride mass using surface, borehole, and airborne electromagnetic induction methods. Water Resources Research, 39(3), 1059. https://doi.org/10.1029/2001wr000710.

    Article  Google Scholar 

  • Podgorski, J. E., Auken, E., Schamper, C., Christiansen, A. V., Kalscheuer, T., & Green, A. G. (2013). Processing and inversion of commercial helicopter time-domain electromagnetic data for environmental assessments and geological and hydrological mapping. Geophysics, 78(4), E149–E159.

    Article  Google Scholar 

  • Podgorski, J. E., Green, A. G., Kalscheuer, T., Kinzelbach, W. K., Horstmeyer, H., Maurer, H., et al. (2015). Integrated interpretation of helicopter and ground-based geophysical data recorded within the Okavango Delta, Botswana. Journal of applied geophysics, 114, 52–67. https://doi.org/10.1016/j.jappgeo.2014.12.017.

    Article  Google Scholar 

  • Rodi, W., & Mackie, R. (2001). Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66, 174–187. https://doi.org/10.1190/1.1444893.

    Article  Google Scholar 

  • Spichak, V. V. (2007). Electromagnetic sounding of the earth’s interior—Methods in geochemistry and geophysics, chapter 3 (2nd ed., Vol. 40). Oxford: Elsevier.

    Google Scholar 

  • Thiel, S., Heinson, G., Gray, D. R., & Gregory, R. T. (2009). Ophiolite emplacement in NE Oman: Constraints from magnetotelluric sounding. Geophysical Journal International, 176(3), 753–766.

    Article  Google Scholar 

  • Thomsen, R., Sondergaard, V. H., & Sorensen, K. I. (2004). Hydrogeological mapping as a basis for establishing site-specific groundwater protection zones in Denmark. Hydrogeology Journal, 12, 550–562. https://doi.org/10.1007/s10040-004-0345-1.

    Article  Google Scholar 

  • Tikhonov, A. N. (1950). On determining electrical characteristics of the deep layers of the Earth’s crust. Doklady Akademii Nauk, 73(2), 295–297.

    Google Scholar 

  • Vozoff, K. (1991). The magnetotelluric method. In M. N. Nabighian (Ed.), Electromagnetic methods in applied geophysics (Vol. 2, pp. 641–711). Tulsa: Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802686.

    Chapter  Google Scholar 

  • Yogeshwar, P., Tezkan, B., & Haroon, A. (2013). Investigation of the Azraq sedimentary basin, Jordan using integrated geoelectrical and electromagnetic techniques, near surface. Geophysics, 11, 381–389.

    Google Scholar 

Download references

Acknowledgements

This publication is supported by FCT project UID/GEO/50019/2013—IDL. The authors would like to thank Prof. Marvin Speece for the language editing of the manuscript. We are grateful to António Soares, Ivo Bernardo, João Plancha da Silva and João Medeiros for their contribution in data collection and equipment mobilization. Reviewers Pritam Yogeshwar and Thomas Kalscheuer gave us very valuable suggestions for improvement by their insight into TEM and AMT data processing and modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Farzamian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzamian, M., Alves Ribeiro, J., Khalil, M.A. et al. Application of Transient Electromagnetic and Audio-Magnetotelluric Methods for Imaging the Monte Real Aquifer in Portugal. Pure Appl. Geophys. 176, 719–735 (2019). https://doi.org/10.1007/s00024-018-2030-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2030-7

Keywords

Navigation