Dynamic In Situ Three-Dimensional Imaging and Digital Volume Correlation Analysis to Quantify Strain Localization and Fracture Coalescence in Sandstone

Abstract

Advances in triaxial compression deformation apparatus design, dynamic X-ray microtomography imaging, data analysis techniques, and digital volume correlation analysis provide unparalleled access to the in situ four-dimensional distribution of developing strain within rocks. To demonstrate the power of these new techniques and acquire detailed information about the micromechanics of damage evolution, deformation, and failure of porous rocks, we deformed 3-cm-scale cylindrical specimens of low-porosity Fontainebleau sandstone in an X-ray-transparent triaxial compression apparatus, and repeatedly recorded three-dimensional tomograms of the specimens as the differential stress was increased until macroscopic failure occurred. Experiments were performed at room temperature with confining pressure in the range of 10–20 MPa. Distinct grayscale subsets, indicative of density, enabled segmentation of the three-dimensional tomograms into intact rock matrix, pore space, and fractures. Digital volume correlation analysis of pairs of tomograms provided time series of three-dimensional incremental strain tensor fields throughout the experiments. After the yield stress was reached, the samples deformed first by dilatant opening and propagation of microfractures, and then by shear sliding via grain rotation and strain localization along faults. For two samples, damage and dilatancy occurred by grain boundary opening and then a sudden collapse of the granular rock framework at failure. For the third sample, a fault nucleated near the yield point and propagated in the sample through the development of transgranular microfractures. The results confirm findings of previous experimental studies on the same rock and provide new detailed quantifications of: (1) the proportion of shear versus dilatant strain in the sample, (2) the amount of dilatancy due to microfracture opening versus pore opening when a fault develops, and (3) the role of grain boundaries and pore walls in pinning microfracture propagation and slowing down the rate of damage accumulation as failure is approached. Our study demonstrates how the combination of high-resolution in situ dynamic X-ray microtomography imaging and digital volume image correlation analysis can be used to provide additional information to unravel brittle failure processes in rocks under stress conditions relevant to the upper crust.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., et al. (2013). Digital rock physics benchmarks—Part I: Imaging and segmentation. Computers and Geosciences, 50, 25–32.

    Article  Google Scholar 

  2. Ashby, M. F., & Sammis, C. G. (1990). The damage mechanics of brittle solids in compression. Pure and Applied Geophysics, 133(3), 489–521.

    Article  Google Scholar 

  3. Auzerais, F. M., Dunsmuir, J., Ferreol, B. B., Martys, N., Olson, J., Ramakrishnan, T. S., et al. (1996). Transport in sandstone: A study based on three dimensional microtomography. Geophysical Research Letters, 23(7), 705–708.

    Article  Google Scholar 

  4. Avazmohammadi, R., & Naghdabadi, R. (2013). Effective behavior of porous elastomers containing aligned spheroidal voids. Acta Metallurgica, 224, 1901–1915.

    Google Scholar 

  5. Baud, P., Reuschlé, T., Ji, Y., Cheung, C. S., & Wong, T. F. (2015). Mechanical compaction and strain localization in Bleurswiller sandstone. Journal of Geophysical Research: Solid Earth, 120, 6501–6522.

    Google Scholar 

  6. Baud, P., Zhu, W., & Wong, T. F. (2000). Failure mode and weakening effect of water on sandstone. Journal of Geophysical Research: Solid Earth, 105, 16371–16389.

    Article  Google Scholar 

  7. Bay, B. K., Smith, T. S., Fyhrie, D. P., & Saad, M. (1999). Digital volume correlation: Three-dimensional strain mapping using X-ray tomography. Experimental Mechanics, 39(3), 217–226.

    Article  Google Scholar 

  8. Bésuelle, P., Desrues, J., & Raynaud, S. (2000). Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. International Journal of Rock Mechanics and Mining Science, 37, 1223–1237.

    Article  Google Scholar 

  9. Bourbie, T., & Zinszner, B. (1985). Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone. Journal of Geophysical Research: Solid Earth, 90(B13), 11524–11532.

    Article  Google Scholar 

  10. Brace, W. F. (1978). Volume changes during fracture and frictional sliding: A review. Pure and Applied Geophysics, 116, 603–614.

    Article  Google Scholar 

  11. Brace, W. F., Paulding, B. W., & Scholz, C. H. (1966). Dilatancy in the fracture of crystalline rocks. Journal of Geophysical Research, 71(16), 3939–3953.

    Article  Google Scholar 

  12. Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising, in computer vision and pattern recognition. IEEE Computer Society Conference, 2, 60–65.

    Google Scholar 

  13. Cladouhos, T. T. (1999). Shape preferred orientations of survivor grains in fault gouge. Journal of Structural Geology, 21(4), 419–436.

    Article  Google Scholar 

  14. Clauset, A., Shalizi, C. R., & Newman, M. (2009). Power-law distributions in empirical data. Society for Industrial and Applied Mathematics Review, 51(4), 661–703.

    Google Scholar 

  15. Coker, D. A., Torquato, S., & Dunsmuir, J. H. (1996). Morphology and physical properties of Fontainebleau sandstone via a tomographic analysis. Journal of Geophysical Research: Solid Earth, 101(B8), 17497–17506.

    Article  Google Scholar 

  16. Cox, S. J. D., & Meredith, P. G. (1993). Microcrack formation and material softening in rock measured by monitoring acoustic emissions. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 30(1), 11–24.

    Article  Google Scholar 

  17. Dahmen, K. A., Ben-Zion, Y., & Uhl, J. T. (2009). A micromechanical model for deformation in disordered solids with universal predictions for stress-strain curves and related avalanches. Physical Review Letters, 102, 175501.

    Article  Google Scholar 

  18. Davis, T., Healy, D., & Bubeck, A. (2017). Stress concentrations around voids in three dimensions: The roots of failure. Journal of Structural Geology, 102, 193–207.

    Article  Google Scholar 

  19. Dresen, G., & Guéguen, Y. (2004). Damage and rock physical properties. In Y. Guéguen & M. Bouteca (Eds.), Mechanics of fluid-saturated rocks (pp. 169–217). Amsterdam: Elsevier Academic.

    Google Scholar 

  20. Eggers, C. G., Berli, M., Accorsi, M. L., & Or, D. (2006). Deformation and permeability of aggregated soft earth materials. Journal of Geophysical Research, 111, B10204. https://doi.org/10.1029/2005JB004123.

    Article  Google Scholar 

  21. El Bied, A., Sulem, J., & Martineau, F. (2002). Microstructure of shear zones in Fontainebleau sandstone. International Journal of Rock Mechanics and Mining Sciences, 39, 917–932.

    Article  Google Scholar 

  22. Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London Series A—Mathematical and Physical Sciences, 241, 376–396.

    Google Scholar 

  23. Faulkner, D. R., Mitchell, T. M., Healy, D., & Heap, M. J. (2006). Slip on ‘weak’ faults by the rotation of regional stress in the fracture damage zone. Nature, 444(7121), 922.

    Article  Google Scholar 

  24. Fortin, J., Stanchits, S., Dresen, G., & Guéguen, Y. (2009). Acoustic emissions monitoring during inelastic deformation of porous sandstone: Comparison of three modes of deformation. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-009-0479-0.

    Google Scholar 

  25. Fredrich, J. T., Greaves, K. H., & Martin, J. W. (1993). Pore geometry and transport properties of Fontainebleau sandstone. International journal of rock mechanics and mining sciences, 30(7):691–697.

  26. Ghaffari, H. O., Nasseri, M. H. B., & Young, R. P. (2014). Faulting of rocks in a three-dimensional stress field by micro-anticracks. Scientific Report, 4, 5011.

    Article  Google Scholar 

  27. Girard, L., Amitrano, D., & Weiss, J. (2010). Failure as a critical phenomenon in a progressive damage model. Journal of Statistical Mechanics: Theory and Experiment. https://doi.org/10.1088/1742-5468/2010/01/P01013.

    Google Scholar 

  28. Goodfellow, S. D., Tisato, N., Ghofranitabari, M., Nasseri, M. H. B., Maxwell, S. C., & Young, R. P. (2015). Attenuation properties of Fontainebleau sandstone during true triaxial deformation using active and passive ultrasonics. Rock Mechanics and Rock Engineering, 48, 2551–2566.

    Article  Google Scholar 

  29. Goodier, J. N. (1933). Concentration of stress around spherical and cylindrical inclusions and pores. Journal of Applied Mechanics, 55, 39–44.

    Google Scholar 

  30. Hall, S. A., Bornert, M., Desrues, J., Pannier, Y., Lenoir, N., Viggiani, G., et al. (2010). Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique, 60(5), 315–322.

    Article  Google Scholar 

  31. Handin, J., Hager, R. V., Friedman, M., & Feather, J. N. (1963). Experimental deformation of sedimentary rocks under confining pressure: Pore pressure tests. AAPG Bulletin, 47, 717–755.

    Google Scholar 

  32. Hazzard, J. F., Young, R. P., & Maxwell, S. C. (2000). Micromechanical modeling of cracking and failure in brittle rocks. Journal of Geophysical Research: Solid Earth, 105, 16683–16697.

    Article  Google Scholar 

  33. Heap, M. J., & Faulkner, D. R. (2008). Quantifying the evolution of static elastic properties as crystalline rock approaches failure. International Journal of Rock Mechanics and Mining Sciences, 45(4), 564–573.

    Article  Google Scholar 

  34. Horii, H., & Nemat-Nasser, S. (1986). Brittle failure in compression: splitting faulting and brittle-ductile transition. Philosophical Transactions of the Royal Society of London A, 319(1549), 337–374.

    Article  Google Scholar 

  35. Johnson, K. L. (1982). One hundred years of Hertz contact. Proceedings of the Institution of Mechanical Engineers, 196(1), 363–378.

    Article  Google Scholar 

  36. Kanaya, T., & Hirth, G. (2018). Brittle to semibrittle transition in quartz sandstone: Energetics. Journal of Geophysical Research: Solid Earth, 123, 84–106.

    Google Scholar 

  37. Katz, O., & Reches, Z. (2004). Microfracturing, damage, and failure of brittle granites. Journal of Geophysical Research: Solid Earth, 109, B01206.

    Article  Google Scholar 

  38. Kemeny, J. M., & Cook, N. G. (1991). Micromechanics of deformation in rocks. In Toughening mechanisms in quasi-brittle materials (pp. 155–188). Dordrecht: Springer.

  39. Kwiatek, G., Charalampidou, E. M., Dresen, G., & Stanchits, S. (2014). An improved method for seismic moment tensor inversion of acoustic emissions through assessment of sensor coupling and sensitivity to incidence angle. International Journal of Rock Mechanics and Mining Sciences, 65, 153–161.

    Article  Google Scholar 

  40. Lindquist, W. B., Venkatarangan, A., Dunsmuir, J., & Wong, T. F. (2000). Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. Journal of Geophysical Research: Solid Earth, 105(B9), 21509–21527.

    Article  Google Scholar 

  41. Lockner, D., Byerlee, J. D., Kuksenko, V., Ponomarev, A., & Sidorin, A. (1991). Quasi-static fault growth and shear fracture energy in granite. Nature, 350, 39–42.

    Article  Google Scholar 

  42. Lockner, D. A., Byerlee, J. D., Kuksenko, V., Ponomarev, A., & Sidorin, A. (1992). Observations of quasistatic fault growth from acoustic emissions. In B. Evans & W. F. Brace (Eds.), Fault mechanics and transport properties of rocks (Vol. 1, pp. 3–31). Cambridge: Academic Press.

    Google Scholar 

  43. Lockner, D., & Madden, T. (1991). A multiple-crack model of brittle fracture. 1. Non-time-dependent simulations. Journal of Geophysical Research, 96, 19623–19642.

    Article  Google Scholar 

  44. Louis, L., Wong, T. F., & Baud, P. (2007). Imaging strain localization by X-ray radiography and digital image correlation: Deformation bands in Rothbach sandstone. Journal of Structural Geology, 29(1), 129–140.

    Article  Google Scholar 

  45. Lyakhovsky, V., Ben-Zion, Y., & Agnon, A. (1997). Distributed damage, faulting, and friction. Journal of Geophysical Research: Solid Earth, 102, 27635–27649.

    Article  Google Scholar 

  46. Marone, C., & Scholz, C. H. (1989). Particle-size distribution and microstructures within simulated fault gouge. Journal of Structural Geology, 11, 799–814.

    Article  Google Scholar 

  47. McBeck, J., Kobchenko, M., Hall, S. A., Tudisco, E., Cordonnier, B., Meakin, P., & Renard, F. (2018). Investigating the onset of strain localization within anisotropic shale using digital volume correlation of time-resolved X-ray microtomography images. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2018JB015676.

    Google Scholar 

  48. Menéndez, B., Zhu, W., & Wong, T. F. (1996). Micromechanics of brittle faulting and cataclastic flow in Berea sandstone. Journal of Structural Geology, 18, 1–16.

    Article  Google Scholar 

  49. Miller, S. A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M., & Kaus, B. J. (2004). Aftershocks driven by a high-pressure CO2 source at depth. Nature, 427(6976), 724–727.

    Article  Google Scholar 

  50. Mirone, A., Brun, E., Gouillart, E., Tafforeau, P., & Kieffer, J. (2014). The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 324, 41–48.

    Article  Google Scholar 

  51. Mogi, K. (1971). Fracture and flow of rocks under high triaxial compression. Journal of Geophysical Research, 76(5), 1255–1269.

    Article  Google Scholar 

  52. Monchiet, V., Kondo, D., Charkaluk, E., & Oana, C. (2008). Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids. International Journal of Plasticity, 24, 1158–1189.

    Article  Google Scholar 

  53. Mura, T. (1982). Micromechanics of defect in solids (p. 588). The Hague: Martinus Nijhoff.

    Google Scholar 

  54. Nadimi, S., Fonseca, J., Bésuelle, P. & Viggiani, G. (2015). A microstructural finite element analysis of cement damage on Fontainebleau sandstone. Paper presented at the ICTMS 2015, 2nd International Conference on Tomography of Materials and Structures, 29 June–3 July 2015, Québec, Canada.

  55. Nasseri, M. H. B., Goodfellow, S. D., Lombos, L., & Young, R. P. (2014). 3-D transport and acoustic properties of Fontainebleau sandstone during true-triaxial deformation experiments. International Journal of Rock Mechanics and Mining Sciences, 69, 1–18.

    Article  Google Scholar 

  56. Otsuki, K., & Dilov, T. (2005). Evolution of hierarchical self-similar geometry of experimental fault zones: implications for seismic nucleation and earthquake size. Journal of Geophysical Research: Solid Earth, 110, B03303. https://doi.org/10.1029/2004JB003359.

    Article  Google Scholar 

  57. Ougier-Simonin, A., & Zhu, W. (2013). Effects of pore fluid pressure on slip behaviors: An experimental study. Geophysical Research Letters, 40(11), 2619–2624.

    Article  Google Scholar 

  58. Ougier-Simonin, A., & Zhu, W. (2015). Effect of pore pressure buildup on slowness of rupture propagation. Journal of Geophysical Research: Solid Earth, 120(12), 7966–7985.

    Google Scholar 

  59. Paterson, M. S., & Wong, T. F. (2005). Experimental rock deformation-the brittle field. Berlin: Springer.

    Google Scholar 

  60. Peng, S., & Johnson, A. M. (1972). Crack growth and faulting in cylindrical specimens of Chelmsford granite. International Journal of Rock Mechanics and Mining Science, 9, 37–86.

    Article  Google Scholar 

  61. Reches, Z., & Lockner, D. A. (1994). Nucleation and growth of faults in brittle rocks. Journal of Geophysical Research, 99, 18159–18173.

    Article  Google Scholar 

  62. Renard, F., Cordonnier, B., Dysthe, D. K., Boller, E., Tafforeau, P., & Rack, A. (2016). A deformation rig for synchrotron microtomography studies of geomaterials under conditions down to 10 km depth in the Earth. Journal of Synchrotron Radiation, 23, 1030–1034.

    Article  Google Scholar 

  63. Renard, F., Cordonnier, B., Kobchenko, M., Kandula, N., Weiss, J., & Zhu, W. (2017). Microscale characterization of rupture nucleation unravels precursors to faulting in rocks. Earth and Planetary Science Letters, 476, 69–78. https://doi.org/10.1016/j.epsl.2017.08.002.

    Article  Google Scholar 

  64. Renard, F., Weiss, J., Mathiesen, J., Ben-Zion, Y., Kandula, N., & Cordonnier, B. (2018). Critical evolution of damage toward system-size failure in crystalline rock. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1002/2017JB014964.

    Google Scholar 

  65. Rudnicki, J. W., & Rice, J. R. (1975). Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids, 23, 371–394.

    Article  Google Scholar 

  66. Sadowsky, M. A., & Sternberg, E. (1949). Stress concentration around a triaxial ellipsoidal cavity. Journal of Applied Mechanics–Transactions of the ASME, 16, 149–157.

    Google Scholar 

  67. Sammis, C. G., & Ashby, M. F. (1986). The failure of brittle porous solids under compressive stress states. Acta Metallurgica, 34(3), 511–526.

    Article  Google Scholar 

  68. Scholz, C. H. (1968). Microfracturing and the inelastic deformation of rock in compression. Journal of Geophysical Research, 73, 1417–1432.

    Article  Google Scholar 

  69. Schubnel, A., Thompson, B. D., Fortin, J., Guéguen, Y., & Young, R. P. (2007). Fluid-induced rupture experiment on Fontainebleau sandstone: Premonitory activity, rupture propagation, and aftershocks. Geophysical Research Letters, 34, L19307.

    Article  Google Scholar 

  70. Stanchits, S., Vinciguerra, S., & Dresen, G. (2006). Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite. Pure and Applied Geophysics, 163, 975–994.

    Article  Google Scholar 

  71. Stavropoulou, E., Andò, E., Tengattini, A., Briffaut, M., Dufour, F., Atkins, D., et al. (2018). Liquid water uptake in unconfined Callovo Oxfordian clay-rock studied with neutron and X-ray imaging. Acta Geotechnica. https://doi.org/10.1007/s11440-018-0639-4.

    Google Scholar 

  72. Sulem, J., & Ouffroukh, H. (2006). Shear-banding in drained and undrained triaxial tests on a saturated sandstone; porosity and permeability evolution. International Journal of Rock Mechanics and Mining Sciences, 43, 292–310.

    Article  Google Scholar 

  73. Tal, Y., Evans, B., & Mok, U. (2016). Direct observations of damage during unconfined brittle failure of Carrara marble. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1002/2015JB012749.

    Google Scholar 

  74. Tandon, G. P., & Weng, G. J. (1986). Stress distribution in and around spheroidal inclusions and voids at finite concentration. Journal of Applied Mechanics, 53, 511–518.

    Article  Google Scholar 

  75. Tapponnier, P., & Brace, W. F. (1976). Development of stress-induced microcracks in Westerly granite. International Journal of Rock Mechanics and Mining Science and Geomechanical Abstracts, 13, 103–112.

    Article  Google Scholar 

  76. Tudisco, E., Andò, E., Cailletaud, R., & Hall, S. A. (2017). TomoWarp2: A local digital volume correlation code. SoftwareX, 6, 267–270.

    Article  Google Scholar 

  77. Tudisco, E., Hall, S. A., Charalampidou, E. M., Kardjilov, N., Hilger, A., & Sone, H. (2015). Full-field measurements of strain localisation in sandstone by neutron tomography and 3D-volumetric digital image correlation. Physics Procedia, 69, 509–515.

    Article  Google Scholar 

  78. Vasseur, J., Wadsworth, F. B., Lavallée, Y., Bell, A. F., Main, I. G., & Dingwell, D. B. (2015). Heterogeneity: The key to failure forecasting. Scientific Reports, 5, 13259.

    Article  Google Scholar 

  79. Viggiani, G., Lenoir, N., Bésuelle, P., Di Michiel, M., Marello, S., Desrues, J., et al. (2004). X-ray microtomography for studying localized deformation in fine-grained geomaterials under triaxial compression. Comptes Rendus Mécanique, 332(10), 819–826.

    Article  Google Scholar 

  80. Wawersik, W. R., & Fairhurst, C. (1970). A study of brittle rock fracture in laboratory compression experiments. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 7(5), 561–575.

    Article  Google Scholar 

  81. Wong, T. F., & Baud, P. (2012). The brittle-ductile transition in porous rock: A review. Journal of Structural Geology, 44, 25–53.

    Article  Google Scholar 

  82. Wong, R., Chau, K., Tang, C., & Lin, P. (2001). Analysis of crack coalescence in rock-like materials containing three flaws—Part I: Experimental approach. International Journal of Rock Mechanics and Mining Sciences, 38(7), 909–924.

    Article  Google Scholar 

  83. Wong, T. F., David, C., & Zhu, W. (1997). The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. Journal of Geophysical Research: Solid Earth, 102(B2), 3009–3025.

    Article  Google Scholar 

  84. Wong, E., & Einstein, H. (2009). Crack coalescence in modeled gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation. Rock Mechanics and Rock Engineering, 42(3), 475–511.

    Article  Google Scholar 

  85. Wu, X. Y., Baud, P., & Wong, T. F. (2000). Micromechanics of compressive failure and spatial evolution of anisotropic damage in Darley Dale sandstone. International Journal of Rock Mechanics and Mining Science, 37, 143–160.

    Article  Google Scholar 

  86. Zhang, J., Wong, T.-F., & Davis, D. M. (1990). Micromechanics of pressure-induced grain crushing in porous rocks. Journal of Geophysical Research: Solid Earth, 95, 341–352.

    Article  Google Scholar 

Download references

Acknowledgements

The deformation apparatus was built by Sanchez Technology. Elodie Boller, Paul Tafforeau, and Alexander Rack provided advice on the design of the tomography setup. This study received funding from the Norwegian Research Council (project ARGUS, grant 272217) and the European Union’s Horizon 2020 Research and Innovation Program under ERC advanced grant agreement no. 669972, “Disequilibrium Metamorphism” (“DIME”). W.Z. acknowledges partial support from the US National Science Foundation EAR-1761912. Beam time was allocated at the European Synchrotron Radiation Facility (long-term proposal ES-295). Data storage was provided by UNINETT Sigma2-the National Infrastructure for High Performance Computing and Data Storage in Norway (project NS9073 K). Médard Thiry (Mines ParisTech) is acknowledged for providing the Fontainebleau sandstone. We thank the Editor, Yehuda Ben-Zion and two anonymous referees for constructive suggestions during the review process.

Author information

Affiliations

Authors

Corresponding author

Correspondence to François Renard.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Renard, F., McBeck, J., Cordonnier, B. et al. Dynamic In Situ Three-Dimensional Imaging and Digital Volume Correlation Analysis to Quantify Strain Localization and Fracture Coalescence in Sandstone. Pure Appl. Geophys. 176, 1083–1115 (2019). https://doi.org/10.1007/s00024-018-2003-x

Download citation

Keywords

  • Faulting
  • rupture nucleation
  • damage
  • dynamic X-ray microtomography
  • Fontainebleau sandstone
  • digital volume correlation