Skip to main content
Log in

Short-Term Forecast of the Carbon Monoxide Concentration Over the Moscow Region by COSMO-ART

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A short-term forecast of the city “chemical weather” requires real daily data on pollutant emissions. For operational daily forecasts of pollutant concentrations, usually long-term emission averages are used which may differ significantly from real values for a certain day, especially in big cities with intense and variable human activities. The online coupled atmospheric chemical transport model COSMO-ART was implemented for the Moscow region, Russia. A method for calculation of pollutant emissions for short-term forecasting was suggested. In this method, “actual” emissions for a certain day are obtained from measurements of air pollutant concentrations. It is assumed that the pollutant concentration reflects the spatially averaged intensity of emission sources. We used the observational data of pollutant concentrations from the network of the State Ecological Monitoring System of Moscow City. In order to get a more homogeneous field of data, “virtual” stations (so-called "bogus data") were added within the areas not covered with observations. The proposed method allows a transformation of the hourly measurements of air pollutant concentration to emission values just after the measurements are completed. We showed the application of this method for carbon monoxide. Verification of COSMO-ART results demonstrates that the forecasts based on emissions calculated by the new method are better than the ones based on climate mean emissions. The approach suggested in the study provides a possibility to issue more detailed operational short-term forecasts of pollutant concentrations for megacities depending on the real air pollution of the previous day. The main limitation of this methodology is that it can be applied to the chemical species that have longer chemical life-time compared to the frequency of concentration measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baklanov, A., Korsholm, U., Mahura, A., Petersen, C., & Gross, A. (2008). ENVIRO-HIRLAM: online coupled modelling of urban meteorology and air pollution. Advances in Science and Research, 2, 41–46.

    Article  Google Scholar 

  • Baklanov, A. (2010). Chemical weather forecasting: a new concept of integrated modeling. Advances in Science and Research, 4, 23–27.

    Article  Google Scholar 

  • Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., et al. (2014). Online coupled regional meteorology chemistry models in Europe current status and prospects. Atmospheric Chemistry and Physics, 14, 317–398.

    Article  Google Scholar 

  • Baklanov, A., Smith Korsholm, U., Nuterman, R., Mahura, A., Nielsen, K. P., Sass, B. H., et al. (2017). Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2). Geoscientific Model Development, 10, 2971–2999.

    Article  Google Scholar 

  • Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., & Reinhardt, T. (2011). Operational convective scale numerical weather prediction with the COSMO model: description and sensitivities. Monthly Weather Review, 139, 3887–3905. https://doi.org/10.1175/MWR-D-10-05013.1.

    Article  Google Scholar 

  • Bangert, M. (2007). Eine parametrisierung fur die berechnung von photolysefrequenzen in chemie-transport-modellen. Institut für Meteorologie und Klimaforschung der Universitat Karlsruhe (TH) Seminararbeit.

  • Brimblecombe, P. (1996). Air composition and chemistry. Cambridge: Cambridge University Press.

    Google Scholar 

  • Denier van der Gon, H., Visschedijk, A., van der Brugh, H., Dröge, R. (2010). A high resolution European emission data base for the year 2005. A contribution to UBA- projekt PAREST: particle reduction strategies. TNO-report TNO-034-UT-2010-01895 RPTML.

  • Fortems-Cheiney, A., Chevallier, F., Pison, I., Bousquet, P., Carouge, C., Clerbaux, C., et al. (2009). On the capability of IASI measurements to inform about CO surface emissions. Atmospheric chemistry and physics, 9, 8735–8743. https://doi.org/10.5194/acp-9-8735-2009.

    Article  Google Scholar 

  • Gorchakov, G. I., Semutnikova, E. G., Zotkin, E. V., Karpova, A. V., Lezinab, E. A., & Ul’yanenko, A. V. (2006). Variations in gaseous pollutants in the air basin of Moscow. Izvestiya, Atmospheric and Oceanic Physics, 42(2), 156–170.

    Article  Google Scholar 

  • Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., et al. (2005). Fully coupled ‘online’ chemistry in the WRF model. Atmospheric Environment, 39, 6957–6976.

    Article  Google Scholar 

  • Hooghiemstra, P. B., Krol, M. C., Meirink, J. F., Bergamaschi, P., van der Werf, G. R., Novelli, P. C., et al. (2011). Optimizing global CO emission estimates using a four-dimensional variational data assimilation. Atmospheric chemistry and physics, 11, 4705–4723. https://doi.org/10.5194/acp-11-4705-2011.

    Article  Google Scholar 

  • Holton, J. R. (2004). An introduction to dynamic meteorology. Burlington: Elsevier Academic Press.

    Google Scholar 

  • Huijnen, V., Williams, J., van Weele, M., van Noije, T., Krol, M., Dentener, F., et al. (2010). The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0, 2010. Geoscientific Model Development, 3, 445–473. https://doi.org/10.5194/gmd-3-445-2010.

    Article  Google Scholar 

  • Kaminski, J. W., Neary, L., Struzewska, J., McConnell, J. C., Lupu, A., Jarosz, J., et al. (2008). GEM-AQ, an online global multiscale chemical weather modelling system: model description and evaluation of gas phase chemistry processes. Atmospheric Chemistry & Physics, 8, 3255–3281.

    Article  Google Scholar 

  • Kaminski, J. W., Plummer, D. A., Neary, L., McConnell, J. C., Struzewska, J., & Lobocki, L. (2002). First application of MC2-AQ to multiscale air quality modelling over Europe. Physics and Chemistry of the Earth, 27–35, 1517–1524.

    Article  Google Scholar 

  • Knote, C., Brunner, D., Vogel, H., Allan, J., Asmi, A., Äijälä, M., et al. (2011). Towards an online-coupled chemistry climate model: evaluation of trace gases and aerosols in COSMO-ART. Geoscientific Model Development, 4, 1077–1102. https://doi.org/10.5194/gmd-4-1077-2011.

    Article  Google Scholar 

  • Kopacz, M., Jacob, D. J., Fisher, J. A., Logan, J. A., Zhang, L., Megretskaia, I. A., et al. (2010). Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atmospheric Chemistry and Physics, 10, 855–876. https://doi.org/10.5194/acp-10-855-2010.

    Article  Google Scholar 

  • Koohkan, R. M., & Bocquet, M. (2012). Accounting for representativeness errors in the inversion of atmospheric constituent emissions: application to the retrieval of regional carbon monoxide fluxes. Tellus B, 64, 19047.

    Article  Google Scholar 

  • Kuenen, J., Denier van der Gon, H., Visschedijk, A., van der Brugh, H. (2011). High resolution European emission inventory for the years 2003–2007. TNO-report TNO-060-UT-2011-00588.

  • Kurbatova, A., Bashkin, V. N., & Kasimov, N. S. (2004). City ecology. Moscow: Scientific World.

    Google Scholar 

  • Mastroianni, G., Milovanovic, G. (2008). Interpolation processes: basic theory and applications. (pp. 446). Springer Monographs in Mathematics. https://doi.org/10.1007/978-3-540-68349-0.

  • Mellor, G. L., & Yamada, T. (1974). A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31, 1791–1806.

    Article  Google Scholar 

  • Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for geophysical flow problems. Reviews of Geophysics and Space Physics, 20, 851–875.

    Article  Google Scholar 

  • Mircea, M., d’Isidoro, M., Maurizi, A., Vitali, L., Monforti, F., Zanini, G., et al. (2007). A comprehensive performance evaluation of the air quality model BOLCHEM over Italy. Atmos: Env. https://doi.org/10.1016/j.atmosenv.2007.10.043.

    Google Scholar 

  • Protonotariou, A. P., Kostopoulou, E., Tombrou, M., & Giannakopoulos, Christos. (2013). European CO budget and links with synoptic circulation based on GEOS-CHEM model simulations. Tellus B., 65, 18640. https://doi.org/10.3402/tellusb.v65i0.18640.

    Article  Google Scholar 

  • Pulles T., van het Bolscher M., Brand R., Visschedijk A. (2007). Assessment of global emissions from fuel combustion in the final decades of the 20th Century. TNO-Report. 2007-A-R0132B.

  • Revokatova, A. P. (2013). A method of carbon monoxide emission forecast in Moscow. Russian Meteorology and Hydrology, 38(6), 396–404. https://doi.org/10.3103/S1068373913060046.

    Article  Google Scholar 

  • Saide, P., Osses, A., Gallardo, L., & Osses, M. (2009). Adjoint inverse modeling of a CO emission inventory at the city scale: Santiago de Chile’s case. Atmospheric Chemistry and Physics Discussions, 9, 6325–6361. https://doi.org/10.5194/acpd-9-6325-2009.

    Article  Google Scholar 

  • Suppan, P., Forkel, R., Haas, E. (2010). The online coupled mesoscale climate–chemistry model MCCM: a modelling tool for short episodes as well as for climate periods. Chapter integrated systems of meso-meteorological and chemical transport models, pp 81–88.

  • Tangborn, A., Stajner, I., Buchwitz, M., Khlystova, I., Pawson, S., Burrows, J., et al. (2009). Assimilation of SCIAMACHY total column CO observations: global and regional analysis of data impact. Journal of Geophysical Research: Atmospheres, 114, D07307. https://doi.org/10.1029/2008JD010781.

    Article  Google Scholar 

  • Vilfand, R. M., Rivin, G. S., & Rozinkina, I. A. (2010). Mesoscale weather short-range forecasting at the Hydrometcenter of Russia, on the example of COSMO-RU. Russian Meteorology and Hydrology, 35(1), 1–9.

    Article  Google Scholar 

  • Vogel, B., Vogel, H., Baumner, D., Bangert, M., Lundgren, K., Rinke, R., et al. (2011). COSMO-ART: aerosols and reactive trace gases within the COSMO model. In A. Baklanov, A. Mahura, & R. S. Sokhi (Eds.), Integrated systems of meso-meteorological and chemical transport models (pp. 75–80). Berlin: Springer.

    Google Scholar 

  • Vogel, B., Vogel, H., Baumer, D., Bangert, M., Lundgren, K., Rinke, R., et al. (2009). The comprehensive model system COSMO-ART—radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmospheric Chemistry and Physics, 9(22), 8661–8680.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the State Ecological Monitoring System of Moscow (Russia) for observations. This work was partially supported by a grant from the Russian Foundation for Basic Research (no. 16-05-00509), partially supported by the Russian Science Foundation under grant no. 16-17-10275 (part of model implementation support). We acknowledge Hugo van der Gon and his colleagues from TNO (Netherlands) for providing the basis emission data set and Dominick Brunner from EMPA (Swiss Federal Laboratories for Materials Science and Technology, Switzerland) who transferred these annual emissions to hourly values on the COSMO-ART grid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Surkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revokatova, A., Kislov, A., Surkova, G. et al. Short-Term Forecast of the Carbon Monoxide Concentration Over the Moscow Region by COSMO-ART. Pure Appl. Geophys. 176, 885–899 (2019). https://doi.org/10.1007/s00024-018-2001-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2001-z

Keywords

Navigation