Skip to main content
Log in

Mapping of buried faults using the 2D modelling of far-field controlled source radiomagnetotelluric data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Controlled source radiomagnetotellurics (CSRMT) is a relatively new geophysical method for near-surface applications. A rectangular signal with base frequencies between 0.1 and 150 kHz is injected through a grounded electric dipole which is used as a transmitter. Electric and magnetic field components are observed at these frequencies and at their subharmonics, usually in the far-field zone so that apparent resistivities and impedance phases can be obtained in a broad frequency range between 1 and 1000 kHz. Inline or broadside configuration can be used for measurements. Similar to the controlled source audiomagnetotelluric method, tensor measurements are also possible when locating two transmitters perpendicular to each other. A scalar CSRMT survey was carried out on the buried faults in the Vuoksa region, 110 km north of St. Petersburg to test the applicability of this method to the mapping of near-surface faults. A 700 m electric dipole with base frequencies of 0.5, 11.3, 30 and 105 kHz was used as a transmitter. Smooth apparent resistivity and phase values as a function of frequency from 1 kHz to 1 MHz were observed in the far-field zone for the inline configuration at 57 stations using a station distance of 20 m. Electric fields observed in the direction of the transmitter were perpendicular to the assumed strike direction of the buried faults so that they could be associated with the TM mode. The observed apparent resistivity and phase TM mode data were interpreted using the 2D inversion algorithm, and a good data fitting could be obtained. The resistivity structure beneath the survey area (down to a depth of 80 m) could be derived and the buried faults could be mapped successfully. In addition to the CSRMT observations, a conventional radiomagnetotelluric (RMT) survey was also carried out on the same profile. An excellent correlation of the observed RMT and CSRMT transfer functions and 2D conductivity models was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bastani, M. (2001). EnviroMT—a new controlled source/radio magnetotelluric system. PhD thesis, Uppsala University, Sweden.

  • Bastani, M., & Pedersen, L. P. (2001). Estimation of magnetotelluric transfer functions from radio transmitters. Geophysics, 66, 1038–1051.

    Article  Google Scholar 

  • Bastani, M., Persson, L., Mehta, S., & Malehmir, A. (2015). Boat-towed radiomagnetotellurics (RMT)—a new technique and case study from the city of Stockholm. Geophysics, 80, B193–B202.

    Article  Google Scholar 

  • Bastani, M., Savvaidis, A., Pedersen, L., & Kalscheuer, T. (2011). CSRMT measurements in the frequency range of 1–250 kHz to map a normal fault in the Volvi basin Greece. Journal of Applied Geophysics, 75, 180–195.

    Article  Google Scholar 

  • Candansayar, M. E., & Tezkan, B. (2008). Two-dimensional joint inversion of radiomagnetotelluric and direct current resistivity data. Geophysical Prospecting, 56, 737–749. https://doi.org/10.1111/j.1365-2478.2008.00695.x.

    Article  Google Scholar 

  • Chave, A. D., Thomson, D. J., & Ander, M. E. (1987). On the robust estimation of power spectra, coherences and transfer functions. Journal of Geophysical Research: Solid Earth, 92(B1), 633–648.

    Article  Google Scholar 

  • Hansen, P. C. (1992). Analysis of discrete ill-posed problems by means of L-curve. SIAM Reviews, 34, 561–580.

    Article  Google Scholar 

  • Hansen, P., & O’Leary, D. (1993). The use of the L-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing, 14, 1487–1503.

    Article  Google Scholar 

  • Kalscheuer, T., Pedersen, L. P., & Siripunvaraporn, W. (2008). Radiomagnetotelluric two dimensional forward and inverse modelling accounting for displacement currents. Geophysical Journal International, 175, 486–514.

    Article  Google Scholar 

  • Linde, N., & Pedersen, L. B. (2004). Characterization of a fractured granite using radio magnetotelluric (RMT) data. Geophysics, 69, 1155–1165.

    Article  Google Scholar 

  • Mackie, R., Rieven, S., & Rodi, W. (1997). User manual and software documentation for two-dimensional of magnetotelluric data. Cambridge, Massachusetts, USA.

  • Martin, R. (2009). Development and application of 2D and 3D transient electromagnetic inverse solutions based on adjoint Green functions: A feasibility study for the spatial reconstruction of conductivity distributions by means of sensitivities. PhD thesis, University of Cologne.

  • Mehta, G., Bastani, M., Malehmir, A., & Pedersen, L. P. (2017). Resolution and sensitivity boat-towed RMT data to deliniate fracture tones—Examples of the Stockholm, bypass multi-lane tunnel. Journal of Applied Geophysics, 139, 131–143.

    Article  Google Scholar 

  • Müller, I. (1983). Anisotropic properties of rocks detected with electromagnetic VLF (pp. 273–282). Zürich: International Symposium Field Measurements in Geomechanics.

    Google Scholar 

  • Özyıldırım, Ö., Candansayar, M. E., Demirci, İ., & Tezkan, B. (2017). Two-dimensional inversion of magnetotelluric/radiomagnetotelluric data by using unstructured mesh. Geophysics, 82(4), E197–E210.

    Article  Google Scholar 

  • Pedersen, L. B., Bastani, M., & Dynesius, L. (2005). Groundwater exploration using combined controlled-source and radiomagnetotelluric techniques. Geophysics, 70, G8–G15.

    Article  Google Scholar 

  • Recher, (2002). Dreidimensionale Erkundung von Altlasten mit Radio-Magnetotellurik-Vergleiche mit geophysikalische, geochemischen und geologischen Analysen an Bodenproben aus Rammkernsondierungen, PhD thesis, University of Cologne.

  • Rodi, W. L., & Mackie, R. L. (2001). Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66, 174–187. https://doi.org/10.1190/1.1444893.

    Article  Google Scholar 

  • Saraev, A., Simakov, A., Shylkov, A., & Tezkan, B. (2017). Controlled source radiomagnetotellurics: a tool for near surface investigations in remote regions. Journal of Applied Geophysics, 146, 228–237.

    Article  Google Scholar 

  • Saraev, A. K., Simakov, A. E., Tezkan, B. (2011). Foot, mobile and controlled source modifications of the radiomagnetotelluric method. Near surface 2011—17th European Meeting of Environmental and Engineering Geophysics, Leicester, UK, 12–14 September 2011.

  • Schwalenberg, K., Rath, V., & Haak, V. (2002). Sensitivity studies applied to a two dimensional resistivity model from the Central Andes. Geophysical Journal International, 150, 673–686.

    Article  Google Scholar 

  • Sidorenko, A., Selivanova, V., & Sokolova, T. (1971). Geology of USSR. Leningrad, Pskov and Novgorod regions. Description of geology (Vol. 1, p. 504). Moscow: Nedra (Annex 1. Geological map of the Sub Quaternary sediments).

    Google Scholar 

  • Smith, J. T., & Booker, J. R. (1991). Rapid inversion of two and three dimensional magnetotelluric data. Journal of Geophysical Research, 96, 3905–3922.

    Article  Google Scholar 

  • Tarasov, G. A., Somov, G. M., Eliseev, A. A., & Antonov, G. K. (1973). Method of alternating natural electric field (User’s guide) (p. 128). Leningrad: Nedra.

    Google Scholar 

  • Tezkan, B. (1999). A review of environmental applications of quasi-stationary electromagnetic techniques. Surveys In Geophysics, 20, 279–308.

    Article  Google Scholar 

  • Tezkan, B. (2009). Radiomagnetotellurics. In R. Kirsch (Ed.), Groundwater geophysics—a tool for hydrogeology (2nd ed., pp. 295–317). Berlin: Springer.

    Chapter  Google Scholar 

  • Tezkan, B., Georgescu, P., & Fauzi, U. (2005). A radiomagnetotelluric survey on an oil-contaminated area near the Brazi Refinery, Romania. Geophysical Prospecting, 53, 311–323.

    Article  Google Scholar 

  • Tezkan, B., Goldman, M., Greinwald, S., Hördt, A., Müller, I., Neubauer, F. M., et al. (1996). A joint application of radiomagnetotellurics and transient electromagnetics to the investigation of a waste deposit in Cologne (Germany). Journal of Applied Geophysics, 31, 133–143.

    Google Scholar 

  • Tezkan, B., Hördt, A., & Gobashy, M. (2000). Two dimensional inversion of radiomagnetotelluric data: selected case histories for waste site exploration. Journal of Applied Geophysics, 44, 237–256.

    Article  Google Scholar 

  • Tezkan, B., & Saraev, A. (2008). A new broadband radiomagnetotelluric instrument application to near surface investigation: near surface. Geophysics, 6, 243–250.

    Google Scholar 

  • Turberg, P., Müller, I., & Flury, F. (1994). Hydrogeological investigation of porous environments by radio magnetotelluric resistivity (RMT-R 12-240 kHz). Journal of Applied Geophysics, 31, 133–143.

    Article  Google Scholar 

  • Vozoff, K. (1972). The magnetotelluric method in the exploration of sedimentary basins. Geophysics, 37, 98–141.

    Article  Google Scholar 

  • Wang, S., Malehmir, A., & Bastani, M. (2016). Geophysical characterization of areas prone to quick-clay landslides using radio-magnetotelluric and seismic methods. Tectonophysics, 677, 248–260.

    Article  Google Scholar 

  • Ward, S. H., Donnell, J. O., Rivera, R., Ware, G. H., & Fraser, D. C. (1966). AFMAG—applications and limitations. Geophysics, 31(3), 576–605.

    Article  Google Scholar 

  • Yogeshwar, P., Tezkan, B., Israil, M., & Candansayar, M. E. (2012). Groundwater contamination in the Roorkee area, India: 2D joint inversion of radiomagnetotelluric and direct current resistivity data. Journal of Applied Geophysics, 76, 127–135.

    Article  Google Scholar 

  • Zacher, G., Tezkan, B., Neubauer, F. M., Hördt, A., & Müller, I. (1996). Radiomagnetotellurics: a powerful tool for waste-site exploration. European Journal of Environmental and Engineering Geophysics, 1, 139–159.

    Article  Google Scholar 

  • Zonge K.L., Hughes L.J. (1991). Controlled source audio-frequency magnetotellurics. Electromagnetic methods in applied geophysics. vol. 2—Applications. Series: Investigations in geophysics, No. 3, pp. 713–809.

Download references

Acknowledgements

This study was supported by the BMBF, German Science Foundation and by the Russian Foundation for Basic Research, project No 18-505-12033. We also thank the two unknown reviewers for their suggestions to improve the manuscript. I.M. thanks the Indonesian Government for the MORA fellowship and the GSGS fellowship Grant of the Graduate School of Geoscience of the University of Cologne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Tezkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tezkan, B., Muttaqien, I. & Saraev, A. Mapping of buried faults using the 2D modelling of far-field controlled source radiomagnetotelluric data. Pure Appl. Geophys. 176, 751–766 (2019). https://doi.org/10.1007/s00024-018-1980-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1980-0

Keywords

Navigation