Abadie, S., Harris, J. C., Grilli, S. T., & Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects. Journal of Geophysical Research, 117, C05030. https://doi.org/10.1029/2011JC007646.
Article
Google Scholar
Amante, C, & Eakins, B. W. (2009). ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M
(March 15, 2017).
Booth, J. S., O’Leary, D. W., Popenoe, P., & Danforth, W. W. (1993). US Atlantic Continental Slope Landslides: Their distribution, general attributes, and implications. In: Schwab, W. C., Lee, H. J., & Twichell, D. C. (Eds.) Submarine landslides: Selected studies in the US exclusive economic zone. US Geological Survey Bulletin, 2002, pp. 14–22.
ten Brink, U. S., Barkan, R., Andrews, B. D., & Chaytor, J. D. (2009b). Size distributions and failure initiation of submarine and subaerial landslides. Earth and Planetary Science Letters, 287, 31–42.
Article
Google Scholar
ten Brink, U. S., Chaytor, J. D., Geist, E. L., Brothers, D. S., & Andrews, B. D. (2014). Assessment of tsunami hazard to the US Atlantic margin. Marine Geology, 353, 31–54.
Article
Google Scholar
ten Brink, U. S., Lee, H. J., Geist, E. L., & Twichell, D. (2009a). Assessment of tsunami hazard to the US East Coast using relationships between submarine landslides and earthquakes. Marine Geology, 264, 65–73.
Article
Google Scholar
ten Brink, U., Twichell, D., Geist, E., Chaytor, J., Locat, J., Lee, H., Buczkowski, B., Barkan, R., Solow, A., Andrews, B., Parsons, T., Lynett, P., Lin, J., & Sansoucy, M. (2008). Evaluation of tsunami sources with the potential to impact the US Atlantic and Gulf coasts. USGS Administrative report to the US Nuclear Regulatory Commission, p. 300.
Chaytor, J. D., ten Brink, U. S., Solow, A. R., & Andrews, B. D. (2009). Size distribution of submarine landslides along the US Atlantic margin. Mar Geol, 264(12), 16–27.
Article
Google Scholar
Chock, G. Y. (2016). Design for tsunami loads and effects in the ASCE 7–16 standard. Journal of Structural Engineering, 142(11), 04016093. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001565.
Article
Google Scholar
ECMAP. (2017). NTHMP tsunami inundation maps for the US East Coast. https://www.udel.edu/kirby/nthmp.html.
Eggeling, T. (2012). Analysis of earthquake triggered submarine landslides at four locations along the US east coast. Masters Thesis. University of Rhode Island.
Enet, F., & Grilli, S. T. (2007). Experimental study of tsunami generation by three-dimensional rigid underwater landslides. Journal of Waterway Port Coastal and Ocean Engineering, 133(6), 442–454. https://doi.org/10.1061/(ASCE)0733-950X(2007).
Article
Google Scholar
Fine, I. V., Rabinovich, A. B., Bornhold, B. D., Thomson, R., & Kulikov, E. A. (2005). The Grand Banks landslide-generated tsunami of November 18, 1929: Preliminary analysis and numerical modeling. Marine Geology, 215, 45–57.
Article
Google Scholar
Geist, E. L., & Lynett, P. J. (2014). Source processes for the probabilistic assessment of tsunami hazards. Oceanography, 27(2), 86–93.
Article
Google Scholar
Geist, E., Lynett, P., & Chaytor, J. (2009). Hydrodynamic modeling of tsunamis from the Currituck landslide. Marine Geology, 264, 41–52. https://doi.org/10.1016/j.margeo.2008.09.005.
Article
Google Scholar
Glimsdal, S., Pedersen, G. K., Harbitz, C. B., & Løvholt, F. (2013). Dispersion of tsunamis: Does it really matter? Natural Hazards and Earth System Sciences, 13, 1507–1526. https://doi.org/10.5194/nhess-13-1507-2013.
Article
Google Scholar
González, F. I., Geist, E. L., Jaffe, B., Kânoglu, U., Mofjeld, H., Synolakis, C. E., et al. (2009). Probabilistic tsunami hazard assessment at seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research Oceans, 114, C11.
Google Scholar
Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies, G., et al. (2017). Probabilistic tsunami hazard analysis: Multiple sources and global applications. Reviews of Geophysics, 55(4), 1158–1198. https://doi.org/10.1002/2017RG000579.
Article
Google Scholar
Grilli, S. T., & Watts, P. (1999). Modeling of waves generated by a moving submerged body. Applications to underwater landslides. Engineering Analysis with Boundary Elements, 23, 645–656.
Article
Google Scholar
Grilli, S. T., & Watts, P. (2005). Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses. Journal of Waterway Port Coastal and Ocean Engineering, 131(6), 283–297. https://doi.org/10.1061/(ASCE)0733-950X(2005).
Article
Google Scholar
Grilli, S. T., Dubosq, S., Pophet, N., Pérignon, Y., Kirby, J. T., & Shi, F. (2010). Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: Near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Natural Hazards and Earth System Sciences, 10, 2109–2125. https://doi.org/10.5194/nhess-2109-2010.
Article
Google Scholar
Grilli, S. T., Grilli, A. R., Tehranirad, B., & Kirby, J. T. (2017a). Modeling tsunami sources and their propagation in the Atlantic Ocean for coastal tsunami hazard assessment and inundation mapping along the US East Coast. In Proceedings of coastal structures and solutions to coastal disasters 2015: Tsunamis (pp. 1–12). Boston: American Soc. Civil Eng, 2015.
Grilli, S. T., Harris, J. C., Tajalibakhsh, T., Masterlark, T. L., Kyriakopoulos, C., Kirby, J. T., et al. (2013b). Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far- and near-field observations. Pure and Applied Geophysics, 170, 1333–1359. https://doi.org/10.1007/s00024-012-0528-y.
Article
Google Scholar
Grilli, S. T., Harris, J. C., Tappin, D. R., Masterlark, T., Kirby, J. T., Shi, F., & Ma, G. (2013a). Numerical modeling of coastal tsunami dissipation and impact. In P. Lynett, & J. Mc Kee Smith (Eds.), Proceedings of 33rd international coastal engineering conference (ICCE12, Santander, Spain, July, 2012) (p. 12). World Scientific Publishing Co. Pte. Ltd.
Grilli, S. T., O’Reilly, C., Harris, J. C., Tajalli Bakhsh, T., Tehranirad, B., Banihashemi, S., et al. (2015). Modeling of SMF tsunami hazard along the upper US East Coast: Detailed impact around Ocean City, MD. Natural Hazards, 76(2), 705–746. https://doi.org/10.1007/s11069-014-1522-8.
Article
Google Scholar
Grilli, S. T., Shelby, M., Kimmoun, O., Dupont, G., Nicolsky, D., Ma, G., et al. (2017b). Modeling coastal tsunami hazard from submarine mass failures: Effect of slide rheology, experimental validation, and case studies off the US East Coast. Natural Hazards, 86(1), 353–391. https://doi.org/10.1007/s11069-016-2692-3.
Article
Google Scholar
Grilli, S. T., Taylor, O.-D. S., Baxter, C. D. P., & Maretzki, S. (2009). Probabilistic approach for determining submarine landslide tsunami hazard along the upper East Coast of the United States. Marine Geology, 264(1–2), 74–97.
Article
Google Scholar
Grilli, S. T., Vogelmann, S., & Watts, P. (2002). Development of a 3D Numerical Wave Tank for modeling tsunami generation by underwater landslides. Engineering Analysis with Boundary Elements, 26(4), 301–313.
Article
Google Scholar
Grothe, P. R., Taylor, L. A., Eakins, B. W., Warnken, R. R., Carignan, K. S., Lim, E., Caldwell, R.J., & Friday, D. Z. (2010). Digital elevation model of Ocean City, Maryland: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-37. National Geophysical Data Center, NOAA.
Heidarzadeh, M., & Kijko, Andrzej. (2011). A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Natural Hazard, 56(3), 577–593.
Article
Google Scholar
Hill, J. C., Brothers, D. S., Craig, B. K., ten Brink, Uri S., Chaytor, J. D., & Flores, C. H. (2017). Geologic controls on submarine slope failure along the central US Atlantic margin: Insights from the Currituck Slide Complex. Marine Geology, 385, 114–130. https://doi.org/10.1016/j.margeo.2016.10.007.
Article
Google Scholar
Horspool, N., Pranantyo, I., Griffin, J., Latief, H., Natawidjaja, D. H., Kongko, W., et al. (2014). A probabilistic tsunami hazard assessment for Indonesia. Natural Hazards and Earth System Sciences, 14(11), 3105–3122.
Article
Google Scholar
Jakeman, J. D., Nielsen, O. M., van Putten, K., Mleczko, R., Burbidge, D., & Horspool, N. (2010). Towards spatially distributed quantitative assessment of tsunami inundation models. Ocean Dynamics, 60(5), 11151138. https://doi.org/10.1007/s10236-010-0312-4.
Article
Google Scholar
Kaiser, G., Scheele, L., Kortenhaus, A., Løvholt, F., Römer, H., & Leschka, S. (2011). The influence of land cover roughness on the results of high resolution tsunami inundation modeling. Natural Hazards and Earth System Sciences, 11, 2521–2540. https://doi.org/10.5194/nhess-11-2521-2011.
Article
Google Scholar
Kirby, J. T., Shi, F., Nicolsky, D., & Misra, S. (2016). The 27 April 1975 Kitimat, British Columbia submarine landslide tsunami: A comparison of modeling approaches. Landslides, 13(6), 1421–1434. https://doi.org/10.1007/s10346-016-0682-x.
Article
Google Scholar
Kirby, J. T., Shi, F., Tehranirad, B., Harris, J. C., & Grilli, S. T. (2013). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modelling, 62, 39–55. https://doi.org/10.1016/j.ocemod.2012.11.009.
Article
Google Scholar
Krauss, T, (2011). Probabilistic tsunami hazard assessment for the United States East Coast. Masters Thesis, University of Rhode Island. http://chinacat.coastal.udel.edu/nthmp/krause-ms-uri11.pdf.
Løvholt, F., Bondevik, S., Laberg, J. S., Kim, J., & Boylan, N. (2017). Some giant submarine landslides do not produce large tsunamis. Geophysical Research Letters, 44(16), 8463–8472. https://doi.org/10.1002/2017GL074062.
Article
Google Scholar
Løvholt, F., Pedersen, G., & Gisler, G. (2008). Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research, 113, C09026.
Article
Google Scholar
Løvholt, F., Pedersen, G., Harbitz, C. B., Glimsdal, S., & Kim, J. (2015). On the characteristics of landslide tsunamis. Philosophical Transactions of the Royal Society A, 373, 20140376. https://doi.org/10.1098/rsta.2014.0376.
Article
Google Scholar
Løvholt, F., Schulten, I., Mosher, D., Harbitz, C., & Kraste, S. (2018). Modelling the 1929 Grand Banks slump and landslide tsunami. In D. G. Lintern, D. C. Mosher, L. G. Moscardelli, P. T. Bobrowsky, C. Campbell, J. D. Chaytor, J. J. Clague, A. Georgiopoulou, P. Lajeunesse, A. Normandeau, D. J. W. Piper, M. Scherwath, C. Stacey, & D. Turmel (Eds.), Subaqueous mass movements (p. 477). London: Geological Society London Special Publications. https://doi.org/10.1144/SP477.28.
Google Scholar
Locat, J., Lee, H., ten Brink, U. S., Twitchell, D., Geist, E., & Sansoucy, M. (2009). Geomorphology, stability and mobility of the Currituck slide. Marine Geology, 264, 28–40.
Article
Google Scholar
Lynett, P., et al. (2017). Inter-model analysis of tsunami-induced coastal currents. Ocean Modeling, 114, 14–32. https://doi.org/10.1016/j.ocemod.2017.04.003.
Article
Google Scholar
Ma, G., Shi, F., & Kirby, J. T. (2012). Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modellimg, 43–44, 22–35.
Article
Google Scholar
Madsen, P. A., Fuhrman, D. R., & Schaffer, H. A. (2008). On the solitary wave paradigm for tsunamis. Journal of Geophysical Research, 113(C12012), 22.
Google Scholar
Matsuyama, M., Ikeno, M., Sakakiyama, T., & Takeda, T. (2007). A study of tsunami wave fission in an undistorted experiment. Tsunami and Its Hazards in the Indian and Pacific Oceans. Pure and Applied Geophysics, 164, 617–631.
Article
Google Scholar
McMaster, R. L. (1960). Sediments of Narragansett Bay system and Rhode Island Sound, Rhode Island. Journal of Sedimentary Research, 30(2), 249–274.
Google Scholar
National Geophysical Data Center. (1999a). US coastal relief model—Northeast Atlantic. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5MS3QNZ
(March 15, 2017)
National Geophysical Data Center. (1999b). US coastal relief model—Southeast Atlantic. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V53R0QR5
(March 15, 2017).
National Centers for Environmental Information. (2014). Tiled coastal elevation models. NOAA National Centers for Environmental Information. Dataset. https://doi.org/10.7289/V5P55KQC.
Piper, D. J. W., Cochonat, P., & Morrison, M. L. (1999). The sequence of events around the epicentre of the 1929 Grand Banks earthquake: Initiation of the debris flows and turbidity current inferred from side scan sonar. Sedimentology, 46, 79–97.
Article
Google Scholar
Shelby, M., Grilli, S. T., & Grilli, A. R. (2016). Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami tide simulations. Pure and Applied Geophysics, 173(12), 3999–4037. https://doi.org/10.1007/s00024-016-1315-y.
Article
Google Scholar
Shi, F., Kirby, J. T., Harris, J. C., Geiman, J. D., & Grilli, S. T. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43–44, 36–51. https://doi.org/10.1016/j.ocemod.2011.12.004.
Article
Google Scholar
SLIDE. (2017). Slope Stability Analysis Model. RockScience Inc. https://www.rocscience.com/rocscience/products/slide.
Tappin, D. R., Grilli, S. T., Harris, J. C., Geller, R. J., Masterlark, T., Kirby, J. T., et al. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology, 357, 344–361. https://doi.org/10.1016/j.margeo.2014.09.043.
Article
Google Scholar
Tehranirad, B., Harris, J. C., Grilli, A. R., Grilli, S. T., Abadie, S., Kirby, J. T., et al. (2015). Far-field tsunami hazard in the north Atlantic basin from large scale flank collapses of the Cumbre Vieja volcano, La Palma. Pure and Applied Geophysics, 172(12), 3589–3616. https://doi.org/10.1007/s00024-015-1135-5.
Article
Google Scholar
Tehranirad, B., Kirby, J. T., Grilli, S. T., Grilli, A. R, & SHi, F. (2017). Continental shelf bathymetry controls the spatial distribution of tsunami hazard for the US East Coast. Geophysical Research Letters (in preparation).
Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., et al. (2014). XSEDE: Accelerating scientific discovery. Computing in Science and Engineering, 16(5), 62–74. https://doi.org/10.1109/MCSE.2014.80.
Article
Google Scholar
Twichell, D. C., McClennen, C. E., & Butman, B. (1981). Morphology and processes associated with the accumulation of the fine-grained sediment deposit on the southern New England shelf. Journal of Sedimentary Research, 51(1), 269–280.
Google Scholar
USGS. (2002). US Geological Survey “2002 interactive deaggregations”. https://geohazards.usgs.gov/deaggint/2002/. Accessed 2012.
Watts, P. & Grilli, S. T. (2003). Underwater landslide shape, motion, deformation, and tsunami generation. In: Proceedings of 13th ISOPE, Honolulu (pp. 364–371). http://personal.egr.uri.edu/grilli/3055p364.pdf.
Watts, P., Grilli, S. T., Tappin, D. R., & Fryer, G. (2005). Tsunami generation by submarine mass failure, II: Predictive equations and case studies. Journal of Waterway Port Coastal and Ocean Engineering, 131(6), 298–310.
Article
Google Scholar
Yavari-Ramshe, S., & Ataie-Ashtiani, B. (2016). Numerical simulation of subaerial and submarine landslide generated tsunami waves—recent advances and future challenges. Landslides, 13(6), 1325–1368. https://doi.org/10.1007/s10346-016-0734-2.
Article
Google Scholar