Skip to main content

Mediterranean Sea-Level Variability in the Second Half of the Twentieth Century: A Bayesian Approach to Closing the Budget

Abstract

Regional sea levels in the Mediterranean sub-basins, the Black Sea and the Atlantic close to Gibraltar between 1930 and 2015, are constructed, based on high-quality tide-gauge data in the wider Mediterranean area, to identify long-term trends against decadal and multidecadal changes. Regional sea-level variability induced by direct atmospheric forcing and steric changes is determined, respectively, from air pressure and temperature and salinity data. Vertical land movements due to glacial isostatic adjustment are also taken into account. Focusing on linear trend in the period 1950–1990, the individual contributions to the trend are calculated and sea-level budget is examined within each region, according to proposed physical model. The trends with their uncertainty intervals are determined using Bayesian statistics. In the Atlantic off Gibraltar and in the Black Sea, the regional sea-level trends were close to the global values; in the Mediterranean, they were close to zero. Sea-level rise in the Atlantic was supported by regional atmospheric loading and thermohaline changes, while the trend underlying the residual part of sea-level variability was comparable to the global mass contribution. Throughout the Mediterranean and in the Black Sea, atmospheric forcing and steric effects induced lowering of sea level. In the Mediterranean, and partly in the Black Sea, these regional effects compensated the effect of global mass increase. It is concluded that over the 1950–1990 interval, the sea-level budget is closed within the, rather wide, credible limits, which are obtained when autocorrelation of the linear-fit residuals is taken into account.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Becker, M., Karpytchev, M., & Lennartz-Sassinek, S. (2014). Long-term sea level trends: Natural or anthropogenic? Geophysical Research Letters, 41, 5571–5580. https://doi.org/10.1002/2014GL061027.

    Article  Google Scholar 

  2. Bos, M. S., Williams, S. D. P., Araujo, I. B., & Bastos, L. (2014). The effect of temporal correlated noise on the sea level rate and acceleration uncertainty. Geophysical Journal International, 196(3), 1423–1430. https://doi.org/10.1093/gji/ggt481.

    Article  Google Scholar 

  3. Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time series analysis (4th ed.). Hoboken: Wiley.

    Book  Google Scholar 

  4. Calafat, F. M., Chambers, D. P., & Tsimplis, M. N. (2012). Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. Journal of Geophysical Research-Oceans. https://doi.org/10.1029/2012jc008285.

    Article  Google Scholar 

  5. Calafat, F. M., Marcos, M., & Gomis, D. (2010). Mass contribution to Mediterranean sea level variability for the period 1948–2000. Global and Planetary Change, 73(3–4), 193–201. https://doi.org/10.1016/j.gloplacha.2010.06.002.

    Article  Google Scholar 

  6. Chambers, D. P., Cazenave, A., Champollion, N., Dieng, H., Llovel, W., Forsberg, R., et al. (2017). Evaluation of the global mean sea level budget between 1993 and 2014. Surveys In Geophysics, 38(1), 309–327. https://doi.org/10.1007/s10712-016-9381-3.

    Article  Google Scholar 

  7. Chen, J. L., Wilson, C. R., & Tapley, B. D. (2013). Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nature Geoscience, 6(7), 549–552. https://doi.org/10.1038/ngeo1829.

    Article  Google Scholar 

  8. Church, J. A., & White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys In Geophysics, 32(4–5), 585–602. https://doi.org/10.1007/s10712-011-9119-1.

    Article  Google Scholar 

  9. Church, J. A., White, N. J., Konikow, L. F., Domingues, C. M., Cogley, J. G., Rignot, E., et al. (2011). Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophysical Research Letters, 38, L18601. https://doi.org/10.1029/2011gl048794.

    Article  Google Scholar 

  10. Coats, S., & Smerdon, J. E. (2017). The Atlantic’s internal drum beat. Nature Geoscience, 10, 470–471. https://doi.org/10.1038/ngeo2970.

    Article  Google Scholar 

  11. Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse, T., & Riva, R. (2017). Reassessment of 20th century global mean sea level rise. Proceedings of the National academy of Sciences of the United States of America, 114, 5946–5951. https://doi.org/10.1073/pnas.1616007114.

    Article  Google Scholar 

  12. Dangendorf, S., Rybski, D., Mudersbach, C., Müller, A., Kaufmann, E., Zorita, E., et al. (2014). Evidence for long-term memory in sea level. Geophysical Research Letters, 41, 5530–5537. https://doi.org/10.1002/2014GL060538.

    Article  Google Scholar 

  13. Douglas, B. C. (1992). Global sea-level acceleration. Journal of Geophysical Research-Oceans, 97(C8), 12699–12706. https://doi.org/10.1029/92jc01133.

    Article  Google Scholar 

  14. Fiedler, J. W., & Conrad, C. P. (2010). Spatial variability of sea level rise due to water impoundment behind dams. Geophysical Research Letters, 37, L12603. https://doi.org/10.1029/2010gl043462 (data available at http://folk.uio.no/clinton/dams/dams.html. Accessed on 15 Nov 2017)

    Article  Google Scholar 

  15. Fronteir Research System for Global Change, Japan Marine Science and Technology Center/Japan. (2005). Subsurface Temperature And Salinity Analyses by Ishii et al. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. http://rda.ucar.edu/datasets/ds285.3/. Accessed on 18 Oct 2017.

  16. Fukumori, I., Menemenlis, D., & Lee, T. (2007). A near-uniform basinwide sea level fluctuation of the Mediterranean Sea. Journal of Physical Oceanography, 37, 338–358. https://doi.org/10.1175/JPO3016.1.

    Article  Google Scholar 

  17. Gregory, P. (2005). Bayesian logical data analysis for the physical sciences. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  18. Ishii, M., & Kimoto, M. (2009). Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. Journal of Oceanography, 65(3), 287–299. https://doi.org/10.1007/s10872-009-0027-7.

    Article  Google Scholar 

  19. Jevrejeva, S., Moore, J. C., Grinsted, A., Matthews, A. P., & Spada, G. (2014). Trends and acceleration in global and regional sea levels since 1807. Global and Planetary Change, 113, 11–22. https://doi.org/10.1016/j.gloplacha.2013.12.004.

    Article  Google Scholar 

  20. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  21. Knight, J. R., Folland, C. K., & Scaife, A. A. (2006). Climate impacts of the Atlantic Multidecadal Oscillation. Geophysical Research Letters, 33, L17706. https://doi.org/10.1029/2006GL026242.

    Article  Google Scholar 

  22. Kubryakov, A. A., Stanichny, S. V., & Volkov, D. L. (2017). Quantifying the impact of basin dynamics on the regional sea level rise in the Black Sea. Ocean Science, 13, 443–452. https://doi.org/10.5194/os-13-443-2017,2017.

    Article  Google Scholar 

  23. Kushnir, Y. (1994). Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. Journal of Climate, 7, 141–157. https://doi.org/10.1175/1520-0442(1994)007%3c0141:IVINAS%3e2.0.CO;2.

    Article  Google Scholar 

  24. Landerer, F. W., & Volkov, D. L. (2013). The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophysical Research Letters, 40, 553–557. https://doi.org/10.1002/grl.50140.

    Article  Google Scholar 

  25. Malačič, V., & Orlić, M. (1993). On the origin of the inverted-barometer effect at subinertial frequencies. Nuovo Cimento Della Societa Italiana Di Fisica C-Geophysics and Space Physics, 16(3), 265–288. https://doi.org/10.1007/bf02524229.

    Article  Google Scholar 

  26. Marcos, M., Gomis, D., Monserrat, S., Alvarez- Fanjul, E., Perez, B., & Garcia-Lafuente, J. (2005). Consistency of long sea-level time series in the northern coast of Spain. Journal of Geophysical Research-Oceans. https://doi.org/10.1029/2004jc002522.

    Article  Google Scholar 

  27. Marcos, M., & Tsimplis, M. N. (2007). Forcing of coastal sea level rise patterns in the North Atlantic and the Mediterranean Sea. Geophysical Research Letters. https://doi.org/10.1029/2007gl030641.

    Article  Google Scholar 

  28. Milly, P. C. D., Cazenave, A., & Gennero, M. C. (2003). Contribution of climate-driven change in continental water storage to recent sea-level rise. Proceedings of the National academy of Sciences of the United States of America, 100(23), 13158–13161. https://doi.org/10.1073/pnas.2134014100.

    Article  Google Scholar 

  29. Orlić, M., & Pasarić, M. (1994). Adriatic sea level and global climatic changes (in Croatian). Pomorski zbornik, 32, 481–501.

    Google Scholar 

  30. Orlić, M., & Pasarić, M. (2000). Sea-level changes and crustal movements recorded along the east Adriatic coast. Nuovo Cimento Della Societa Italiana Di Fisica C-Geophysics and Space Physics, 23(4), 351–364.

    Google Scholar 

  31. Orlić, M., & Pasarić, M. (2013). Is the Mediterranean sea level rising again? In Rapport du 40e Congres de la CIESM (p. 205). France: Marseille.

    Google Scholar 

  32. Peltier, W. R. (2004). Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G(VM2) model and GRACE. Annual Review of Earth and Planetary Sciences, 2004(32), 111–149. https://doi.org/10.1146/annurev.earth.32.082503.144359.

    Article  Google Scholar 

  33. Pohlmann, H., Sienz, F., & Latif, M. (2006). Influence of the multidecadal Atlantic meridional overturning circulation variability on European climate. Journal of Climate, 19, 6062–6067. https://doi.org/10.1175/JCLI3941.1.

    Article  Google Scholar 

  34. Potter, R. A., & Lozier, M. S. (2004). On the warming and salinification of the Mediterranean outflow waters in the North Atlantic. Geophysical Research Letters. https://doi.org/10.1029/2003gl018161.

    Article  Google Scholar 

  35. PSMSL (2017). Obtaining Tide Gauge Data. Data. Permanent service for mean sea level. http://www.psmsl.org/data/obtaining. Accessed on 22 Feb 2017.

  36. Rixen, M., Beckers, J. M., Levitus, S., Antonov, J., Boyer, T., Maillard, C., et al. (2005). The Western Mediterranean deep water: A proxy for climate change. Geophysical Research Letters. https://doi.org/10.1029/2005gl022702.

    Article  Google Scholar 

  37. Sivia, D. S., & Skilling, J. (2006). Data analysis, A Bayesian tutorial. Oxford: Oxford University Press.

    Google Scholar 

  38. Spada, G., Stocchi, P., & Colleoni, F. (2009). Glacio-isostatic adjustment in the Po Plain and in the Northern Adriatic region. Pure and Applied Geophysics, 166(8–9), 1303–1318. https://doi.org/10.1007/s00024-004-0498-9.

    Article  Google Scholar 

  39. Stocchi, P., & Spada, G. (2009). Influence of glacial isostatic adjustment upon current sea level variations in the Mediterranean. Tectonophysics, 474(1–2), 56–68. https://doi.org/10.1016/j.tecto.2009.01.003.

    Article  Google Scholar 

  40. Stocchi, P., Spada, G., & Cianetti, S. (2005). Isostatic rebound following the Alpine deglaciation: Impact on the sea level variations and vertical movements in the Mediterranean region. Geophysical Journal International, 162(1), 137–147. https://doi.org/10.1111/j.1365-246X.2005.02653.x.

    Article  Google Scholar 

  41. Sutton, R. T., & Dong, B. (2012). Atlantic Ocean influence on a shift in European climate in the 1990s. Nature Geoscience, 5, 788–792. https://doi.org/10.1038/ngeo1595.

    Article  Google Scholar 

  42. Sutton, R. T., & Hodson, D. L. R. (2005). Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115–118. https://doi.org/10.1126/science.1109496.

    Article  Google Scholar 

  43. Trenberth, K. E., & Paolino, D. A. (1980). The northern hemisphere sea-level pressure data set—trends, errors and discontinuities. Monthly Weather Review, 108(7), 855–872. https://doi.org/10.1175/1520-0493(1980)108<0855:TNHSLP>2.0.CO;2.

    Article  Google Scholar 

  44. Tsimplis, M. N., Alvarez-Fanjul, E., Gomis, D., Fenoglio-Marc, L., & Perez, B. (2005). Mediterranean sea level trends: Atmospheric pressure and wind contribution. Geophysical Research Letters, 32(20), L20602. https://doi.org/10.1029/2005gl023867.

    Article  Google Scholar 

  45. Tsimplis, M. N., & Baker, T. F. (2000). Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes? Geophysical Research Letters, 27(12), 1731–1734. https://doi.org/10.1029/1999gl007004.

    Article  Google Scholar 

  46. Tsimplis, M. N., & Josey, S. A. (2001). Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophysical Research Letters, 28(5), 803–806. https://doi.org/10.1029/2000gl012098.

    Article  Google Scholar 

  47. Tsimplis, M. N., Josey, S. A., Rixen, M., & Stanev, E. V. (2004). On the forcing of sea level in the Black Sea. Journal of Geophysical Research-Oceans , 109, C08015. https://doi.org/10.1029/2003jc002185.

    Article  Google Scholar 

  48. Tsimplis, M., Marcos, M., Somot, S., & Barnier, B. (2008). Sea level forcing in the Mediterranean Sea between 1960 and 2000. Global and Planetary Change, 63(4), 325–332. https://doi.org/10.1016/j.gloplacha.2008.07.004.

    Article  Google Scholar 

  49. Tsimplis, M. N., Raicich, F., Fenoglio-Marc, L., Shaw, A. G. P., Marcos, M., Somot, S., et al. (2012). Recent developments in understanding sea level rise at the Adriatic coasts. Physics and Chemistry of the Earth, 40–41, 59–71. https://doi.org/10.1016/j.pce.2009.11.007.

    Article  Google Scholar 

  50. Tsimplis, M. N., & Rixen, M. (2002). Sea level in the Mediterranean Sea: The contribution of temperature and salinity changes. Geophysical Research Letters, 29(23), 2136. https://doi.org/10.1029/2002gl015870.

    Article  Google Scholar 

  51. Tsimplis, M., Spada, G., Marcos, M., & Flemming, N. (2011). Multi-decadal sea level trends and land movements in the Mediterranean Sea with estimates of factors perturbing tide gauge data and cumulative uncertainties. Global and Planetary Change, 76(1–2), 63–76. https://doi.org/10.1016/j.gloplacha.2010.12.002.

    Article  Google Scholar 

  52. Tsimplis, M., Zervakis, V., Josey, S. A., Peneva, E., Struglia, M. V., Stanev, E., et al. (2006). Changes in the oceanography of the Mediterranean Sea and their link to climate variability. In P. Lionello, P. Malanotte-Rizzoli, & R. Boscolo (Eds.), Mediterranean climate variability (pp. 227–282). Amsterdam: Elsevier.

    Google Scholar 

  53. Veit, E., & Conrad, C. P. (2016). The impact of groundwater depletion on spatial variations in sea level change during the past century. Geophysical Research Letters, 43, 3351–3359. https://doi.org/10.1029/2012gl068118 (data available at http://folk.uio.no/clinton/groundwater/groundwater.html. Accessed on 15 November 2017)

  54. Visser, H., Dangendorf, S., & Petersen, C. A. (2015). A review of trend models applied to sea level data with reference to the ‘‘acceleration-deceleration debate’’. Journal of Geophysical Research-Oceans, 120, 3873–3895. https://doi.org/10.1002/2015JC010716.

    Article  Google Scholar 

  55. Volkov, D. L., & Landerer, F. W. (2015). Internal and external forcing of sea level variability in the Black Sea. Climate Dynamics, 45, 2633–2646. https://doi.org/10.1007/s00382-015-2498-0.

    Article  Google Scholar 

  56. White, N. J., Haigh, I. D., Church, J. A., Koen, T., Watson, C. S., Pritchard, T. R., et al. (2014). Australian sea levels—trends, regional variability and influencing factors. Earth-Science Reviews, 136, 155–174. https://doi.org/10.1016/j.earscirev.2014.05.011.

    Article  Google Scholar 

  57. Woodworth, P. L. (1990). A search for accelerations in records of European mean sea-level. International Journal of Climatology, 10(2), 129–143. https://doi.org/10.1002/joc.3370100203.

    Article  Google Scholar 

  58. Zerbini, S., Raicich, F., Prati, C. M., Bruni, S., Del Conte, S., Errico, M., et al. (2017). Sea-level change in the Northern Mediterranean Sea from long-period tide gauge time series. Earth-Science Reviews, 167, 72–87. https://doi.org/10.1016/j.earscirev.2017.02.009.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been FULLY supported by Croatian Science Foundation under the project HRZZ-IP-2013-11-2831 (CARE). The authors acknowledge Meteo-France for supplying and the HyMeX database teams (ESPRI/IPSL and SEDOO/Observatoire Midi-Pyrenees) for their help in accessing the MEDAR data, while the Hydrographic Institute of the Republic of Croatia provided recent tide-gauge data in the Adriatic.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miroslava Pasarić.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orlić, M., Pasarić, M. & Pasarić, Z. Mediterranean Sea-Level Variability in the Second Half of the Twentieth Century: A Bayesian Approach to Closing the Budget. Pure Appl. Geophys. 175, 3973–3988 (2018). https://doi.org/10.1007/s00024-018-1974-y

Download citation

Keywords

  • Mediterranean
  • sea level
  • long-term variability
  • trend
  • sea-level budget
  • Bayesian statistics