Operational Wave Modelling in the Adriatic Sea with the Wind Wave Model

Abstract

The accurate modelling of sea surface gravity waves is essential for accurate oceanic forecasting with high sea waves being a major concern for navigation and coastal activities. It is also very important for oceanic modelling, with the wave input being key to the accurate modelling of oceanic surface stress, sediment resuspension, and also to oceanic current modelling. In the Croatian Meteorological Institute, we have implemented the Wind Wave Model III as an operational model. The wind forcing used is based on the numerical weather prediction model ALADIN/HR. The model uses near-surface winds dynamically adapted to 2 km grid spacing over the 3-day forecast range. The boundary condition at the Otranto Strait is obtained from the WAM model forecasts computed at ECMWF. The model setup uses an unstructured grid to make the forecasts. The numerical modellization uses an implicit scheme that we describe. We found an underestimate of significant wave height by 8 cm, an absolute error of 21 cm and a correlation of 91% on comparing with the altimeter of the SARAL satellite. Comparison with wave radar and buoys show no underestimate and smaller absolute errors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    More details are in http://jadran.izor.hr/hazadr/about_radars.htm.

References

  1. Ardhuin, F., Hanafin, J., Quilfen, Y.Q., Chapron, B., Queffeulou, P.& Obrebski, M. 2011. Calibration of the IOWAGA GLOBAL WAVE HINDCAST (1991–2011) using ECMWF and CFSR winds. In 12th International Workshop on Wave Hindcasting and Forecasting (pp. 1–13), Kona Coast, Hawaii, HI, 2011, Kona, USA.

  2. Ardhuin, F., Rascle, N., & Belibassakis, K. A. (2008). Explicit wave averaged primitive equations using a generalized lagrangian mean. Ocean Modelling, 20, 35–60.

    Article  Google Scholar 

  3. Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J. F., Magne, R., Roland, A., et al. (2010). Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. Journal of Physical Oceanography, 40(9), 1917–1941.

    Article  Google Scholar 

  4. Babić, N., Večenaj, Ž., Kozmar, H., Horvath, K., de Wekker, S. F. J., & Grisogono, B. (2016). On turbulent fluxes during string winter bora wind events. Boundary-Layer Meterology, 158, 331–350.

    Article  Google Scholar 

  5. Battjes, J.A., & Janssen, J.P.F.M. 1976. Energy loss and set-up due to breaking of random waves. In Proceedings of 16th International Conference on Coastal Engineering, volume 16 of Coastal Engineering Proceedings (pp. 569–587). Coastal Engineering Research Council.

  6. Belušić, D., Žagar, M., & Grisogono, B. (2007). Numerical simulation of pulsations in the bora wind. Quarterly Journal Royal Meteorological Society, 133, 1371–1388.

    Article  Google Scholar 

  7. Benetazzo, A., Carniel, S., Sclavo, M., & Bergamasco, A. (2013). Wave-current interaction: Effect on the wave field in a semi-enclosed basin. Ocean Modelling, 70, 152–165.

    Article  Google Scholar 

  8. Bertotti, L., Bidlot, J. R., Buizza, R., Cavaleri, L., & Janousek, M. (2011). Deterministic and ensemble-based prediction of Adriatic Sea sirocco storms leading to acqua alta in Venice. Quarterly Journal Royal Meteorological Society, 137, 1446–1466.

    Article  Google Scholar 

  9. Bertotti, L., & Cavaleri, L. (2011). The predictability of meteo-oceanographic events. Ocean Dynamics, 61(9), 1391–1402.

    Article  Google Scholar 

  10. Bertotti, L., Cavaleri, L., Loffredo, L., & Torrisi, L. (2013). Netuno analysis of a wind and wave forecast system for the Mediterranean Sea. Monthly Weather Review, 141, 3130–3141.

    Article  Google Scholar 

  11. Callahan, P. S., Morris, C. S., & Hsiao, S. V. (1994). Comparison of topex/poseidon \(\sigma \_0\) and significant wave height distribution to Geosat. Journal of Geophysical Research: Oceans, 99(C12), 25015–25024.

    Article  Google Scholar 

  12. Carniel, S., Benetazzo, A., Bonaldo, D., Falcieri, F. M., Miglietta, M. M., Ricchi, A., et al. (2016). Scratching beneath the surface while coupling atmosphere, ocean and waves: Analysis of a dense water formation event. Ocean Modelling, 101, 101–112.

    Article  Google Scholar 

  13. Cavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J. R., Breivik, O., et al. (2018). Wave modelling in coastal and inner seas. Progress in Oceanography. https://doi.org/10.1016/j.pocean.2018.03.010.

    Article  Google Scholar 

  14. Cavaleri, L., & Bertotti, L. (1996). In search of the correct wind and wave fields in a minor basin. Monthly Weather Review, 125, 1964–1975.

    Article  Google Scholar 

  15. Cavaleri, L., & Bertotti, L. (2006). The improvement of modelled wind and wave fields with increasing resolution. Ocean Engineering, 33, 553–565.

    Article  Google Scholar 

  16. Cavaleri, L., & Bertotti, L. (2009). Wind and wave predictions in the Adriatic Sea. Journal of Marine Systems, 78, 227–234.

    Article  Google Scholar 

  17. Courant, R., Isaacson, E., & Rees, M. (1952). On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics, 5, 243–255.

    Article  Google Scholar 

  18. De Biasio, F., Miglietta, M. M., Zecchetto, S., & della Valle, A. (2014). Numerical models sea surface wind compared to scatterometer observations for a single Bora event in the Adriatic Sea. Advances in Science and Research, 11, 41–48. (13th EMS Annual Meeting and 11th European Conference on Applications of Meteorology (ECAM), Reading, UNITED KINGDOM, SEP 09–13, 2013).

    Article  Google Scholar 

  19. Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists. Advanced series on ocean engineering 2. Cambridge: Cambridge University Press.

    Google Scholar 

  20. Donatini, L., Lupieri, G., Contento, G., Feudale, L., Pedroncini, A., Cusati, L. A., et al. (2015). A high resolution wind and wave forecast model chain for the Mediterranean and Adriatic Sea. Towards green marine technology and transport (pp. 859–866). Boca Raton: CRC.

    Google Scholar 

  21. Dutour Sikirić, M., Janeković, I., Tomažić, I., Kuzmić, M., & Roland, A. (2015). Comparison of ALADIN and IFS model wind speeds over the Adriatic. Acta Adriatica, 56, 67–82.

    Google Scholar 

  22. Dutour Sikirić, M., Roland, A., Janeković, I., Tomažić, I., & Kuzmić, M. (2013). Coupling of the regional ocean modelling system and wind wave model. Ocean Modelling, 72, 59–73.

    Article  Google Scholar 

  23. ECMWF. (2018). IFS Documentation—Cy43r3, Part VII: ECMWF wave model. https://www.ecmwf.int/sites/default/files/elibrary/2017/17739-part-vii-ecmwf-wave-model.pdf. Accessed Mar 2018.

  24. Gommenginger, C., Thibaut, P., Fenoglio-Marc, L., Quartly, G., Deng, X., Gómez-Enri, J., et al. (2011). Retracking altimeter waveforms near the coasts. Coastal altimetry, earth and environment science (pp. 66–101). New York: Springer.

    Google Scholar 

  25. Grisogono, B., & Belušić, D. (2009). A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind. Tellus A: Dynamic Meteorology and Oceanography, 61A, 1–16.

    Article  Google Scholar 

  26. Haiden, T., Janousek, M., Bidlot, J.R., Ferranti, L., Prates, F., Vitart, F., Bauer, P., & Richardson, D.S. 2017. Evaluation of ECMWF forecasts, including 2016–2017 upgrades. Tech. Rep. Memorandum 817. Research Department, ECMWF, Reading, U.K.

  27. Hasselmann, K., Barnett, T. P., Brouws, E., Carlson, H., Cartwright, D. E., Enke, K., et al. (1973). Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP). Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift. Deutches Hydrographisches Institut.

  28. Hasselmann, S., Hasselmann, K., Allender, J. J., & Barnett, T. P. (1985). Computations and parameterizations of the nonlinear energy-transfer in a gravity-wave spectrum. 2. Parameterizations of the nonlinear energy-transfer for applications in wave models. Journal of Physical Oceanography, 15(11), 1378–1391.

    Article  Google Scholar 

  29. Holthuijsen, L. (2007). Waves in oceanic and coastal waters. Series in computational methods in mechanics and thermal sciences. Cambridge: Cambridge University Press.

    Google Scholar 

  30. Janssen, P.A.E.M., Doyle, J.D., Bidlot, J.R., Hansen, B., Isaksen, L.,& Viterbo, P. 2001. Impact and feedback of ocean waves on the atmosphere. Tech. Rep. Memorandum 341. Research Department, ECMWF, Reading, UK.

  31. Lambin, J., Morrow, R., Fu, L. L., Willis, J. K., Bonekamp, H., Lillibridge, J., et al. (2010). The OSTM/Jason-2 misson. Marine Geodesy, 33, 4–25.

    Article  Google Scholar 

  32. Medugorac, I., Pasarić, M., & Orlić, M. (2015). Severe flooding along the eastern Adriatic coast: the case of 1 December 2008. Ocean Dynamics, 65, 817–830.

    Article  Google Scholar 

  33. Mentaschi, L., Besio, G., Cassola, F., & Mazzino, A. (2015). Performance evaluation of Wavewatch III in the Mediterranean Sea. Ocean Modelling, 90, 82–94.

    Article  Google Scholar 

  34. Nieto-Borge, J. C., Hessner, K., Jarabo-Amores, P., & de la Mata-Moya, D. (2008). Signal-to-noise ratio analysis to estimate ocean wave heights from X-band marine radar image time series. IET Radar, Sonar and Navigation, 2, 35–41.

    Article  Google Scholar 

  35. Orlić, M., Kuzmić, M., & Pasarić, Z. (1994). Response of the Adriatic Sea to the bora and sirocco forcing. Continental Shelf Research, 14, 91–116.

    Article  Google Scholar 

  36. Patankar, S. (1980). Numerical heat transfer and fluid flows. Series in computational methods in mechanics and thermal sciences. New York: McGraw-Hill.

    Google Scholar 

  37. Priester, R. W., & Miller, L. S. (1979). Estimation of significant wave height and wave height density-function using satellite altimeter data. Journal of Geophysical Research, 84(NB8), 4021–4026.

    Article  Google Scholar 

  38. Queffeulou, P. (2004). Long term validation of wave height measurements from altimeters. Marine Geodesy, 27, 495–510.

    Article  Google Scholar 

  39. Ricchi, A., Miglietta, M. M., Falco, P. P., Benetazzo, A., Bonaldo, D., & Bergamasco, A., et al. (2016). On the use of a coupled ocean-atmosphere-wave model during an extreme cold air outbreak over the Adriatic Sea. Atmospheric Research, 172, 48–65.

    Article  Google Scholar 

  40. Roland, A. (2012). Application of residual distribution schemes to the geographical part of the wave action equation. ECMWF workshop on ocean waves, 25–27 June 2012 (pp. 1–24). UK: Reading.

    Google Scholar 

  41. Saad, Y. (2003). Iterative methods for sparse linear systems (2nd ed.). Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  42. Sepulveda, H. H., Queffeulou, P., & Ardhuin, F. (2015). Assessment of SARAL/AltiKa wave height measurements relative to Buoy, Jason-2, and Cryosat-2 data. Marine Geodesy, 38(1), 449–465.

    Article  Google Scholar 

  43. Signell, R. P., Carniel, S., Cavaleri, L., Chiggiato, J., Doyle, J. D., Pullen, J., et al. (2005). Assessment of wind quality for oceanographic modelling in semi-enclosed basins. Journal of Marine Systems, 53(1–4), 217–233.

    Article  Google Scholar 

  44. Sportisse, B. (2000). An analysis of operator splitting techniques in the stiff case. Journal of Computational Physics, 161, 140–168.

    Article  Google Scholar 

  45. Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R., Bénard, P., et al. (2018). The ALADIN system and its canonical model configurations AROME CY41T1 and ALARO CY40T1. Geoscientific Model Development, 11, 257–281.

    Article  Google Scholar 

  46. The WAMDI Group. (1998). The WAM model–A third generation wave prediction model. Journal of Physical Oceanography, 18, 1775–1810.

    Article  Google Scholar 

  47. Zecchetto, S., della Valle, A., & De Biasio, F. (2015). Mitigation of ECMWF-scatterometer wind biases in view of storm surge applications in the Adriatic Sea. Advances in Space Research, 55(5), 1291–1299.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the project Copernicus for making available buoy wave measurements and Ifremer for collecting the altimeter data from the satellites. We thank the project HAZADR (IPA Adriatic Cross-border Cooperation 2007–2013) for financing the installation of the HF radar. Part of the work presented in the paper was done under the frame of project Ecological response of northern Adriatic to climatic changes and anthropogenic impact (EcoRENA) by Croatian science Foundation. We thank the referees for careful reading and Fabrice Ardhuin for help with the altimeter.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mathieu Dutour Sikirić.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dutour Sikirić, M., Ivanković, D., Roland, A. et al. Operational Wave Modelling in the Adriatic Sea with the Wind Wave Model. Pure Appl. Geophys. 175, 3801–3815 (2018). https://doi.org/10.1007/s00024-018-1954-2

Download citation

Keywords

  • Implicit scheme
  • altimeter
  • buoy
  • wave radar