Pure and Applied Geophysics

, Volume 175, Issue 11, pp 3801–3815 | Cite as

Operational Wave Modelling in the Adriatic Sea with the Wind Wave Model

  • Mathieu Dutour SikirićEmail author
  • Damir Ivanković
  • Aron Roland
  • Stjepan Ivatek-Šahdan
  • Martina Tudor


The accurate modelling of sea surface gravity waves is essential for accurate oceanic forecasting with high sea waves being a major concern for navigation and coastal activities. It is also very important for oceanic modelling, with the wave input being key to the accurate modelling of oceanic surface stress, sediment resuspension, and also to oceanic current modelling. In the Croatian Meteorological Institute, we have implemented the Wind Wave Model III as an operational model. The wind forcing used is based on the numerical weather prediction model ALADIN/HR. The model uses near-surface winds dynamically adapted to 2 km grid spacing over the 3-day forecast range. The boundary condition at the Otranto Strait is obtained from the WAM model forecasts computed at ECMWF. The model setup uses an unstructured grid to make the forecasts. The numerical modellization uses an implicit scheme that we describe. We found an underestimate of significant wave height by 8 cm, an absolute error of 21 cm and a correlation of 91% on comparing with the altimeter of the SARAL satellite. Comparison with wave radar and buoys show no underestimate and smaller absolute errors.


Implicit scheme altimeter buoy wave radar 



We thank the project Copernicus for making available buoy wave measurements and Ifremer for collecting the altimeter data from the satellites. We thank the project HAZADR (IPA Adriatic Cross-border Cooperation 2007–2013) for financing the installation of the HF radar. Part of the work presented in the paper was done under the frame of project Ecological response of northern Adriatic to climatic changes and anthropogenic impact (EcoRENA) by Croatian science Foundation. We thank the referees for careful reading and Fabrice Ardhuin for help with the altimeter.


  1. Ardhuin, F., Hanafin, J., Quilfen, Y.Q., Chapron, B., Queffeulou, P.& Obrebski, M. 2011. Calibration of the IOWAGA GLOBAL WAVE HINDCAST (1991–2011) using ECMWF and CFSR winds. In 12th International Workshop on Wave Hindcasting and Forecasting (pp. 1–13), Kona Coast, Hawaii, HI, 2011, Kona, USA.Google Scholar
  2. Ardhuin, F., Rascle, N., & Belibassakis, K. A. (2008). Explicit wave averaged primitive equations using a generalized lagrangian mean. Ocean Modelling, 20, 35–60.CrossRefGoogle Scholar
  3. Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J. F., Magne, R., Roland, A., et al. (2010). Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. Journal of Physical Oceanography, 40(9), 1917–1941.CrossRefGoogle Scholar
  4. Babić, N., Večenaj, Ž., Kozmar, H., Horvath, K., de Wekker, S. F. J., & Grisogono, B. (2016). On turbulent fluxes during string winter bora wind events. Boundary-Layer Meterology, 158, 331–350.CrossRefGoogle Scholar
  5. Battjes, J.A., & Janssen, J.P.F.M. 1976. Energy loss and set-up due to breaking of random waves. In Proceedings of 16th International Conference on Coastal Engineering, volume 16 of Coastal Engineering Proceedings (pp. 569–587). Coastal Engineering Research Council.Google Scholar
  6. Belušić, D., Žagar, M., & Grisogono, B. (2007). Numerical simulation of pulsations in the bora wind. Quarterly Journal Royal Meteorological Society, 133, 1371–1388.CrossRefGoogle Scholar
  7. Benetazzo, A., Carniel, S., Sclavo, M., & Bergamasco, A. (2013). Wave-current interaction: Effect on the wave field in a semi-enclosed basin. Ocean Modelling, 70, 152–165.CrossRefGoogle Scholar
  8. Bertotti, L., Bidlot, J. R., Buizza, R., Cavaleri, L., & Janousek, M. (2011). Deterministic and ensemble-based prediction of Adriatic Sea sirocco storms leading to acqua alta in Venice. Quarterly Journal Royal Meteorological Society, 137, 1446–1466.CrossRefGoogle Scholar
  9. Bertotti, L., & Cavaleri, L. (2011). The predictability of meteo-oceanographic events. Ocean Dynamics, 61(9), 1391–1402.CrossRefGoogle Scholar
  10. Bertotti, L., Cavaleri, L., Loffredo, L., & Torrisi, L. (2013). Netuno analysis of a wind and wave forecast system for the Mediterranean Sea. Monthly Weather Review, 141, 3130–3141.CrossRefGoogle Scholar
  11. Callahan, P. S., Morris, C. S., & Hsiao, S. V. (1994). Comparison of topex/poseidon \(\sigma \_0\) and significant wave height distribution to Geosat. Journal of Geophysical Research: Oceans, 99(C12), 25015–25024.CrossRefGoogle Scholar
  12. Carniel, S., Benetazzo, A., Bonaldo, D., Falcieri, F. M., Miglietta, M. M., Ricchi, A., et al. (2016). Scratching beneath the surface while coupling atmosphere, ocean and waves: Analysis of a dense water formation event. Ocean Modelling, 101, 101–112.CrossRefGoogle Scholar
  13. Cavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J. R., Breivik, O., et al. (2018). Wave modelling in coastal and inner seas. Progress in Oceanography. Scholar
  14. Cavaleri, L., & Bertotti, L. (1996). In search of the correct wind and wave fields in a minor basin. Monthly Weather Review, 125, 1964–1975.CrossRefGoogle Scholar
  15. Cavaleri, L., & Bertotti, L. (2006). The improvement of modelled wind and wave fields with increasing resolution. Ocean Engineering, 33, 553–565.CrossRefGoogle Scholar
  16. Cavaleri, L., & Bertotti, L. (2009). Wind and wave predictions in the Adriatic Sea. Journal of Marine Systems, 78, 227–234.CrossRefGoogle Scholar
  17. Courant, R., Isaacson, E., & Rees, M. (1952). On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics, 5, 243–255.CrossRefGoogle Scholar
  18. De Biasio, F., Miglietta, M. M., Zecchetto, S., & della Valle, A. (2014). Numerical models sea surface wind compared to scatterometer observations for a single Bora event in the Adriatic Sea. Advances in Science and Research, 11, 41–48. (13th EMS Annual Meeting and 11th European Conference on Applications of Meteorology (ECAM), Reading, UNITED KINGDOM, SEP 09–13, 2013).CrossRefGoogle Scholar
  19. Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists. Advanced series on ocean engineering 2. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Donatini, L., Lupieri, G., Contento, G., Feudale, L., Pedroncini, A., Cusati, L. A., et al. (2015). A high resolution wind and wave forecast model chain for the Mediterranean and Adriatic Sea. Towards green marine technology and transport (pp. 859–866). Boca Raton: CRC.CrossRefGoogle Scholar
  21. Dutour Sikirić, M., Janeković, I., Tomažić, I., Kuzmić, M., & Roland, A. (2015). Comparison of ALADIN and IFS model wind speeds over the Adriatic. Acta Adriatica, 56, 67–82.Google Scholar
  22. Dutour Sikirić, M., Roland, A., Janeković, I., Tomažić, I., & Kuzmić, M. (2013). Coupling of the regional ocean modelling system and wind wave model. Ocean Modelling, 72, 59–73.CrossRefGoogle Scholar
  23. ECMWF. (2018). IFS Documentation—Cy43r3, Part VII: ECMWF wave model. Accessed Mar 2018.
  24. Gommenginger, C., Thibaut, P., Fenoglio-Marc, L., Quartly, G., Deng, X., Gómez-Enri, J., et al. (2011). Retracking altimeter waveforms near the coasts. Coastal altimetry, earth and environment science (pp. 66–101). New York: Springer.Google Scholar
  25. Grisogono, B., & Belušić, D. (2009). A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind. Tellus A: Dynamic Meteorology and Oceanography, 61A, 1–16.CrossRefGoogle Scholar
  26. Haiden, T., Janousek, M., Bidlot, J.R., Ferranti, L., Prates, F., Vitart, F., Bauer, P., & Richardson, D.S. 2017. Evaluation of ECMWF forecasts, including 2016–2017 upgrades. Tech. Rep. Memorandum 817. Research Department, ECMWF, Reading, U.K.Google Scholar
  27. Hasselmann, K., Barnett, T. P., Brouws, E., Carlson, H., Cartwright, D. E., Enke, K., et al. (1973). Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP). Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift. Deutches Hydrographisches Institut.Google Scholar
  28. Hasselmann, S., Hasselmann, K., Allender, J. J., & Barnett, T. P. (1985). Computations and parameterizations of the nonlinear energy-transfer in a gravity-wave spectrum. 2. Parameterizations of the nonlinear energy-transfer for applications in wave models. Journal of Physical Oceanography, 15(11), 1378–1391.CrossRefGoogle Scholar
  29. Holthuijsen, L. (2007). Waves in oceanic and coastal waters. Series in computational methods in mechanics and thermal sciences. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  30. Janssen, P.A.E.M., Doyle, J.D., Bidlot, J.R., Hansen, B., Isaksen, L.,& Viterbo, P. 2001. Impact and feedback of ocean waves on the atmosphere. Tech. Rep. Memorandum 341. Research Department, ECMWF, Reading, UK.Google Scholar
  31. Lambin, J., Morrow, R., Fu, L. L., Willis, J. K., Bonekamp, H., Lillibridge, J., et al. (2010). The OSTM/Jason-2 misson. Marine Geodesy, 33, 4–25.CrossRefGoogle Scholar
  32. Medugorac, I., Pasarić, M., & Orlić, M. (2015). Severe flooding along the eastern Adriatic coast: the case of 1 December 2008. Ocean Dynamics, 65, 817–830.CrossRefGoogle Scholar
  33. Mentaschi, L., Besio, G., Cassola, F., & Mazzino, A. (2015). Performance evaluation of Wavewatch III in the Mediterranean Sea. Ocean Modelling, 90, 82–94.CrossRefGoogle Scholar
  34. Nieto-Borge, J. C., Hessner, K., Jarabo-Amores, P., & de la Mata-Moya, D. (2008). Signal-to-noise ratio analysis to estimate ocean wave heights from X-band marine radar image time series. IET Radar, Sonar and Navigation, 2, 35–41.CrossRefGoogle Scholar
  35. Orlić, M., Kuzmić, M., & Pasarić, Z. (1994). Response of the Adriatic Sea to the bora and sirocco forcing. Continental Shelf Research, 14, 91–116.CrossRefGoogle Scholar
  36. Patankar, S. (1980). Numerical heat transfer and fluid flows. Series in computational methods in mechanics and thermal sciences. New York: McGraw-Hill.CrossRefGoogle Scholar
  37. Priester, R. W., & Miller, L. S. (1979). Estimation of significant wave height and wave height density-function using satellite altimeter data. Journal of Geophysical Research, 84(NB8), 4021–4026.CrossRefGoogle Scholar
  38. Queffeulou, P. (2004). Long term validation of wave height measurements from altimeters. Marine Geodesy, 27, 495–510.CrossRefGoogle Scholar
  39. Ricchi, A., Miglietta, M. M., Falco, P. P., Benetazzo, A., Bonaldo, D., & Bergamasco, A., et al. (2016). On the use of a coupled ocean-atmosphere-wave model during an extreme cold air outbreak over the Adriatic Sea. Atmospheric Research, 172, 48–65.CrossRefGoogle Scholar
  40. Roland, A. (2012). Application of residual distribution schemes to the geographical part of the wave action equation. ECMWF workshop on ocean waves, 25–27 June 2012 (pp. 1–24). UK: Reading.Google Scholar
  41. Saad, Y. (2003). Iterative methods for sparse linear systems (2nd ed.). Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
  42. Sepulveda, H. H., Queffeulou, P., & Ardhuin, F. (2015). Assessment of SARAL/AltiKa wave height measurements relative to Buoy, Jason-2, and Cryosat-2 data. Marine Geodesy, 38(1), 449–465.CrossRefGoogle Scholar
  43. Signell, R. P., Carniel, S., Cavaleri, L., Chiggiato, J., Doyle, J. D., Pullen, J., et al. (2005). Assessment of wind quality for oceanographic modelling in semi-enclosed basins. Journal of Marine Systems, 53(1–4), 217–233.CrossRefGoogle Scholar
  44. Sportisse, B. (2000). An analysis of operator splitting techniques in the stiff case. Journal of Computational Physics, 161, 140–168.CrossRefGoogle Scholar
  45. Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R., Bénard, P., et al. (2018). The ALADIN system and its canonical model configurations AROME CY41T1 and ALARO CY40T1. Geoscientific Model Development, 11, 257–281.CrossRefGoogle Scholar
  46. The WAMDI Group. (1998). The WAM model–A third generation wave prediction model. Journal of Physical Oceanography, 18, 1775–1810.CrossRefGoogle Scholar
  47. Zecchetto, S., della Valle, A., & De Biasio, F. (2015). Mitigation of ECMWF-scatterometer wind biases in view of storm surge applications in the Adriatic Sea. Advances in Space Research, 55(5), 1291–1299.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Rudjer Bošković InstituteZagrebCroatia
  2. 2.Institute of Oceanography and FisheriesSplitCroatia
  3. 3.BGS IT&E GMBHDarmstadtGermany
  4. 4.Državni hidrometeorološki zavodZagrebCroatia

Personalised recommendations