Skip to main content
Log in

Modelling Interannual Changes in Dense Water Formation on the Northern Adriatic Shelf

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The paper aims to estimate wintertime thermohaline properties and dense water formation (DWF) dynamics, rates, and transports in the northern and middle Adriatic between 2008 and 2015. The focus has also been directed to the year-to-year differences between two known DWF sites located on the northern Adriatic shelf and in the eastern coastal region. The estimates are based on a high-resolution interannual simulation by Regional Ocean Modelling System, one-way forced by the meteorological Aladin/HR operational mesoscale model, with new river climatology imposed particularly at the eastern Adriatic coast. Substantial interannual variability in wintertime bottom densities has been found, varying for more than 1.0 kg m−3 among years. Such variations are largely associated with the January–February heat losses, while atmospheric preconditioning in November–December seems to have a little effect on the DWF rates. By contrast, salinity is preconditioning the DWF in the eastern coastal site. That has been found relevant for DWF rates during extraordinary winters, as in the case of 2012. Contribution of a coastal site to the overall DWF rates in other years has not been substantial. Finally, a saw-tooth-like pattern in thermohaline time series has been found in observations and reproduced by the numerical model at the bottom of the middle Adriatic depressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., & Russo, A. (1997). The Adriatic Sea general circulation. Part I: Air–sea interactions and water mass structure. Journal of Physical Oceanography, 27, 1492–1514.

    Article  Google Scholar 

  • Artegiani, A., & Salusti, E. (1987). Field observation of the flow of dense water on the bottom of the Adriatic Sea during the winter of 1981. Oceanologica Acta, 10, 387–391.

    Google Scholar 

  • Batistić, M., Garić, R., & Molinero, J. C. (2014). Interannual variations in Adriatic Sea zooplankton mirror shifts in circulation regimes in the Ionian Sea. Climate Research, 61, 231–240.

    Article  Google Scholar 

  • Beg-Paklar, G., Isakov, V., Koračin, D., Kourafalou, V., & Orlić, M. (2001). A case study of bora-driven flow and density changes on the Adriatic shelf (January 1987). Continental Shelf Research, 21, 1751–1783.

    Article  Google Scholar 

  • Benetazzo, A., Bergamasco, A., Bonaldo, D., Falcieri, F. M., Sclavo, M., Langone, L., et al. (2014). Response of the Adriatic Sea to an intense cold air outbreak: Dense water dynamics and wave-induced transport. Progress in Oceanography, 128, 115–138.

    Article  Google Scholar 

  • Bensi, M., Cardin, V., Rubino, A., Notarstefano, G., & Poulain, P.-M. (2013a). Effects of winter convection on the deep layer of the Southern Adriatic Sea in 2012. Journal of Geophysical Research, 118, 6064–6075.

    Google Scholar 

  • Bensi, M., Rubino, A., Cardin, V., Hainbucher, D., & Mancero-Mosquera, I. (2013b). Structure and variability of the abyssal water masses in the Ionian Sea in the period 2003–2010. Journal of Geophysical Research, 118, 931–943.

    Google Scholar 

  • Bonaldo, D., Benetazzo, A., Bergamasco, A., Campiani, E., Foglini, F., Sclavo, M., et al. (2016). Interactions among Adriatic continental margin morphology, deep circulation and bedform patterns. Marine Geology, 375, 82–98.

    Article  Google Scholar 

  • Buljan, M., & Zore-Armanda, M. (1976). Oceanographic properties of the Adriatic Sea. Oceanography and Marine Biology Annual Review, 14, 11–98.

    Google Scholar 

  • Cantoni, C., Luchetta, A., Chiggiato, J., Cozzi, S., Schroeder, K., & Langone, L. (2016). Dense water flow and carbonate system in the southern Adriatic: A focus on the 2012 event. Marine Geology, 375, 15–27.

    Article  Google Scholar 

  • Carniel, S., Bonaldo, D., Benetazzo, A., Bergamasco, A., Boldrin, A., Falcieri, F. M., et al. (2016). Off-shelf fluxes across the southern Adriatic margin: Factors controlling dense-water-driven transport phenomena. Marine Geology, 375, 44–63.

    Article  Google Scholar 

  • Cavaleri, L., & Bertotti, L. (1997). Search of the correct wind and wave fields in a minor basin. Monthly Weather Review, 125, 1964–1975.

    Article  Google Scholar 

  • Chiggiato, J., Bergamasco, A., Borghini, M., Falcieri, F. M., Falco, P., Langone, L., et al. (2016). Dense-water bottom currents in the Southern Adriatic Sea in spring 2012. Marine Geology, 375, 134–145.

    Article  Google Scholar 

  • Civitarese, G., Gačić, M., Lipizer, M., & Borzelli Eusebi, L. G. (2010). On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences, 7, 3987–3997.

    Article  Google Scholar 

  • Dautović, J., Vojvodić, V., Tepić, N., Ćosović, B., & Ciglenečki, I. (2017). Dissolved organic carbon as potential indicator of global change: A long-term investigation in the northern Adriatic. Science of the Total Environment, 587–588, 185–195.

    Article  Google Scholar 

  • Davolio, S., Stocchi, P., Benetazzo, A., Bohm, E., Riminucci, F., Ravaioli, M., et al. (2015). Exceptional bora outbreak in winter 2012: Validation and analysis of high-resolution atmospheric model simulations in the northern Adriatic area. Dynamics of Atmospheres and Oceans, 71, 1–20.

    Article  Google Scholar 

  • Degobbis, D., Precali, R., Ivančić, I., Smodlaka, N., Fuks, D., & Kveder, S. (1990). Long-term changes in the northern Adriatic ecosystem related to anthropogenic eutrophication. International Journal of Environment and Pollution, 13, 495–533.

    Article  Google Scholar 

  • Dorman, C. E., Carniel, S., Cavaleri, L., Chiggiato, J., Doyle, J., Haack, T., et al. (2006). Winter 2003 marine atmospheric conditions and the Bora over the northern Adriatic. Journal of Geophysical Research, 111, C03S03. https://doi.org/10.1029/2005jc003134.

    Article  Google Scholar 

  • Dubrovsky, M., Hayes, M., Duce, P., Trnka, M., Svoboda, M., & Zara, P. (2015). Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region. Regional Environmental Change, 14, 1907–1919.

    Article  Google Scholar 

  • Dutour Sikirić, M., Janeković, I., & Kuzmić, M. (2009). A new approach to bathymetry smoothing in sigma-coordinate ocean models. Ocean Modelling, 29, 128–136.

    Article  Google Scholar 

  • Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., & Young, G. S. (1996). Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. Journal of Geophysical Research, 101, 3747–3764.

    Article  Google Scholar 

  • Foglini, F., Campiani, E., & Trincardi, F. (2016). The reshaping of the South West Adriatic Margin by cascading of dense shelf waters. Marine Geology, 375, 64–81.

    Article  Google Scholar 

  • Franco, P., & Michelato, A. (1992). Northern Adriatic Sea: Oceanography of the basin proper and of the western coastal zone. In A. Vollenweider, R. Marchetti, & R. Viviani (Eds.), Marine and Coastal Eutrophication (pp. 35–62). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Gačić, M., Borzelli, G. L. E., Civitarese, G., Cardin, V., & Yari, S. (2010). Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophysical Research Letters, 37, L09608. https://doi.org/10.1029/2010GL043216.

    Article  Google Scholar 

  • Gačić, M., Civitarese, G., Kovačević, V., Ursella, L., Bensi, M., Menna, M., et al. (2014). Extreme winter 2012 in the Adriatic: an example of climatic effect on the BiOS rhythm. Ocean Science, 10, 513–522.

    Article  Google Scholar 

  • Gačić, M., Civitarese, G., Miserocchi, S., Cardin, V., Crise, A., & Mauri, E. (2002). The open-ocean convection in the Southern Adriatic: A controlling mechanism of the spring phytoplankton bloom. Continental Shelf Research, 22, 1897–1908.

    Article  Google Scholar 

  • Giani, G., Djakovac, T., Degobbis, D., Cozzi, S., Solidoro, C., & Fonda Umani, S. (2012). Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuarine, Coastal and Shelf Science, 115, 1–13.

    Article  Google Scholar 

  • Grisogono, B., & Belušić, D. (2009). A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind. Tellus A, 61, 1–16.

    Article  Google Scholar 

  • Grubišić, V. (2004). Bora-driven potential vorticity banners over the Adriatic. Quarterly Journal of the Royal Meteorological Society, 130, 2571–2603.

    Article  Google Scholar 

  • Ivatek-Šahdan, S., & Tudor, M. (2004). Use of high-resolution dynamical adaptation in operational suite and research impact studies. Meteorologische Zeitschrift, 13, 99–108.

    Article  Google Scholar 

  • Janeković, I., Mihanović, H., Vilibić, I., & Tudor, M. (2014). Extreme cooling and dense water formation estimates in open and coastal regions of the Adriatic Sea during the winter of 2012. Journal of Geophysical Research, 119, 3200–3218.

    Google Scholar 

  • Krasakopouloua, E., Souvermezoglou, E., Minas, H. J., & Scoullos, M. (2005). Organic matter stoichiometry based on oxygen consumption—nutrients regeneration during a stagnation period in Jabuka Pit (middle Adriatic Sea). Continental Shelf Research, 25, 127–142.

    Article  Google Scholar 

  • Kuzmić, M., Janeković, I., Book, J. W., Martin, P. J., & Doyle, J. D. (2006). Modeling the northern Adriatic double-gyre response to intense bora wind: A revisit. Journal of Geophysical Research, 111, C03S13. https://doi.org/10.1029/2005jc003377.

    Article  Google Scholar 

  • Lee, C. M., Askari, F., Book, J., Carniel, S., Cushman-Roisin, B., Dorman, C., et al. (2005). Northern Adriatic response to a wintertime bora wind event. Eos, 86, 157–165.

    Article  Google Scholar 

  • Ličer, M., Smerkol, P., Fettich, A., Ravdas, M., Papapostolou, A., Mantziafou, A., et al. (2016). Modeling the ocean and atmosphere during an extreme bora event in northern Adriatic using one-way and two-way atmosphere-ocean coupling. Ocean Science, 12, 71–86.

    Article  Google Scholar 

  • Loglisci, N., Qian, M. W., Rachev, N., Cassardo, C., Longhetto, A., Purini, R., et al. (2004). Development of an atmosphere-ocean coupled model and its application over the Adriatic Sea during a severe weather event of Bora wind. Journal of Geophysical Research, 109, D01102. https://doi.org/10.1029/2003JD003956.

    Article  Google Scholar 

  • Mantziafou, A., & Lascaratos, A. (2004). An eddy resolving numerical study of the general circulation and deep-water formation in the Adriatic Sea. Deep-Sea Research I, 51, 921–952.

    Article  Google Scholar 

  • Mantziafou, A., & Lascaratos, A. (2008). Deep-water formation in the Adriatic Sea: Interannual simulations for the years 1979–1999. Deep-Sea Research I, 55, 1403–1427.

    Article  Google Scholar 

  • Marchesiello, P., McWilliams, J. C., & Shchepetkin, A. F. (2001). Open boundary conditions for long term integration of regional oceanic models. Ocean Modelling, 3, 1–20.

    Article  Google Scholar 

  • Marini, M., Maselli, V., Campanelli, A., Foglini, F., & Grilli, F. (2016). Role of the Mid-Adriatic deep in dense water interception and modification. Marine Geology, 375, 5–14.

    Article  Google Scholar 

  • Martin, P. J., Book, J. W., Burrage, D. M., Rowley, C. D., & Tudor, M. (2009). Comparison of model-simulated and observed currents in the central Adriatic during DART. Journal of Geophysical Research, 114, 5. https://doi.org/10.1029/2008jc004842.

    Article  Google Scholar 

  • Martin, P. J., Book, J. W., & Doyle, J. D. (2006). Simulation of the northern Adriatic circulation during winter 2003. Journal of Geophysical Research, 111, C03S12. https://doi.org/10.1029/2006jc003511.

    Article  Google Scholar 

  • Matić, F., Kovač, Ž., Vilibić, I., Mihanović, H., Morović, M., Grbec, B., et al. (2016). Oscillating Adriatic temperature and salinity regimes mapped using the self-organizing maps method. Continental Shelf Research, 13, 11–18.

    Google Scholar 

  • Meteorological and Hydrological Service. (2013). Climate monitoring and assessment for 2012. Reviews, 24, 38.

    Google Scholar 

  • Meteorological and Hydrological Service. (2014). Climate monitoring and assessment for 2013. Reviews, 25, 38.

    Google Scholar 

  • Mihanović, H., Vilibić, I., Carniel, S., Tudor, M., Russo, A., Bergamasco, A., et al. (2013). Exceptional dense water formation on the Adriatic shelf in the winter of 2012. Ocean Science, 9, 561–572.

    Article  Google Scholar 

  • Mihanović, H., Vilibić, I., Dunić, N., & Šepić, J. (2015). Mapping of decadal middle Adriatic oceanographic variability and its relation to the BiOS regime. Journal of Geophysical Research, 120, 5615–5630.

    Google Scholar 

  • Nof, D. (1983). The translation of isolated cold eddies along a sloping bottom. Deep-Sea Research, 30, 171–182.

    Article  Google Scholar 

  • Oddo, P., & Guarnieri, A. (2011). A study of the hydrographic conditions in the Adriatic Sea from numerical modelling and direct observations (2000–2008). Ocean Science, 7, 549–567.

    Article  Google Scholar 

  • Oddo, P., Pinardi, N., Zavatarelli, M., & Coluccelli, A. (2006). The Adriatic basin forecasting system. Acta Adriatica, 47, 169–184.

    Google Scholar 

  • Orlić, M., Dadić, V., Grbec, B., Leder, N., Marki, A., Matić, F., et al. (2006). Wintertime buoyancy forcing, changing seawater properties and two different circulation systems produced in the Adriatic. Journal of Geophysical Research, 111, C03S07. https://doi.org/10.1029/2005jc003271.

    Article  Google Scholar 

  • Orlić, M., Gačić, M., & La Violette, P. E. (1992). The currents and circulation of the Adriatic Sea. Oceanologica Acta, 15, 109–124.

    Google Scholar 

  • Peharda, M., Black, B. A., Purroy, A., & Mihanović, H. (2016). The bivalve Glycymeris pilosa as a multidecadal environmental archive for the Adriatic and Mediterranean Seas. Marine Environmental Research, 119, 79–87.

    Article  Google Scholar 

  • Pullen, J., Doyle, J. D., Haack, T., Dorman, C., Signell, R. P., & Lee, C. M. (2007). Bora event variability and the role of air-sea feedback. Journal of Geophysical Research, 112, C03S18. https://doi.org/10.1029/2006JC003726.

    Article  Google Scholar 

  • Querin, S., Bensi, M., Cardin, V., Solidoro, C., Bacer, S., Mariotti, L., et al. (2016). Saw-tooth modulation of the deep-water thermohaline properties in the southern Adriatic Sea. Journal of Geophysical Research, 121, 4585–4600.

    Google Scholar 

  • Raicich, F. (1994). Notes on the Flow rates of the Adriatic Rivers. Technical Report RF 02/94, p. 8, CNR. Istituto sperimentale talassografico, Trieste, Italy.

  • Raicich, F., Malačič, V., Celio, M., Giaiotti, D., Cantoni, C., Colucci, R. R., et al. (2013). Extreme air-sea interactions in the Gulf of Trieste (North Adriatic) during the strong Bora event in winter 2012. Journal of Geophysical Research, 118, 5238–5250.

    Google Scholar 

  • Regner, S. (1996). Effects of environmental changes on early stages and reproduction of anchovy in the Adriatic Sea. Scientia Marina, 60(Suppl 2), 167–177.

    Google Scholar 

  • Robinson, A. R., Malanotte-Rizzoli, P., Hecht, A., Michelato, A., Roether, W., Theocharis, A., et al. (1992). General circulation of the Eastern Mediterranean. Earth-Science Reviews, 32, 285–309.

    Article  Google Scholar 

  • Sánchez, E., Gallardo, C., Gaertner, M. A., Arribas, A., & Castro, M. (2004). Future climate extreme events in the Mediterranean simulated by a regional climate model: A first approach. Global and Planetary Change, 44, 163–180.

    Article  Google Scholar 

  • Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system: A split-explicit, free-surface, topography-following coordinate ocean model. Ocean Modelling, 9, 347–404.

    Article  Google Scholar 

  • Shchepetkin, A. F., & McWilliams, J. C. (2009). Correction and commentary for Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system by Haidvogel et al., Journal of Computational Physics 227, 3595–3624. Journal of Computational Physics, 228, 8985–9000.

    Article  Google Scholar 

  • Supić, N., Grbec, B., Vilibić, I., & Ivančić, I. (2004). Long-term changes in hydrographic conditions in northern Adriatic and its relationship to hydrological and atmospheric processes. Annales Geophysicae, 22, 733–745.

    Article  Google Scholar 

  • Supić, N., & Orlić, M. (1999). Seasonal and interannual variability of the northern Adriatic surface fluxes. Journal of Marine Systems, 20, 205–229.

    Article  Google Scholar 

  • Tudor, M., Ivatek-Šahdan. S., & Stanešić, A. (2012). February 2012 winter conditions in Croatia. In 6th HyMEX Workshop, Primošten, Croatia, 7–10 May.

  • Vested, H. J., Berg, P., & Uhrenholdt, T. (1998). Dense water formation in the Northern Adriatic. Journal of Marine Systems, 18, 135–160.

    Article  Google Scholar 

  • Vilibić, I. (2003). An analysis of dense water production on the North Adriatic shelf. Estuarine, Coastal and Shelf Science, 56, 697–707.

    Article  Google Scholar 

  • Vilibić, I., Grbec, B., & Supić, N. (2004). Dense water generation in the north Adriatic in 1999 and its recirculation along the Jabuka Pit. Deep-Sea Research I, 51, 1457–1474.

    Article  Google Scholar 

  • Vilibić, I., & Mihanović, H. (2013). Observing the bottom density current over a shelf using an Argo profiling float. Geophysical Research Letters, 40, 910–915. https://doi.org/10.1002/grl.50215.

    Article  Google Scholar 

  • Vilibić, I., Mihanović, H., Janeković, I., Denamiel, C., Poulain, P.-M., Orlić, M., et al. (2018). Dense water formation in the coastal northeastern Adriatic Sea: The NAdEx 2015 experiment. Ocean Science, 14, 237–258. https://doi.org/10.5194/os-14-237-2018.

    Article  Google Scholar 

  • Vilibić, I., Mihanović, H., Janeković, I., & Šepić, J. (2016). Modelling the formation of dense water in the northern Adriatic: Sensitivity studies. Ocean Modelling, 101, 17–29.

    Article  Google Scholar 

  • Vilibić, I., Šepić, J., & Proust, N. (2013). Weakening of thermohaline circulation in the Adriatic Sea. Climate Research, 55, 217–225.

    Article  Google Scholar 

  • Zore-Armanda, M. (1963). Les masses d’eau de la mer Adriatique. Acta Adriatica, 10, 5–88.

    Google Scholar 

  • Zore-Armanda, M., & Gačić, M. (1987). Effects of Bora on the circulation in the north Adriatic. Annales Geophysicae, 5B, 93–102.

    Google Scholar 

Download references

Acknowledgements

This project has been supported by Croatian Science Foundation under the Grants ADAM-ADRIA (IP-11-2013-5928), ADIOS (IP-06-2016-1955), and SCOOL (IP-09-2014-5747). Some observational data were acquired within FP7 PERSEUS-ADREX and EUROFLEETS2 ESAW (Grant No. 312762) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivica Vilibić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihanović, H., Janeković, I., Vilibić, I. et al. Modelling Interannual Changes in Dense Water Formation on the Northern Adriatic Shelf. Pure Appl. Geophys. 175, 4065–4081 (2018). https://doi.org/10.1007/s00024-018-1935-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1935-5

Keywords

Navigation