Skip to main content
Log in

Analysis and interpretation of earthquake-related groundwater response and ground deformation: a case study of May 2006 seismic sequence in the Mexicali Valley, Baja California, Mexico

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

A Correction to this article was published on 24 September 2018

This article has been updated

Abstract

Anomalous groundwater level and temperature changes are compared with ground deformation recorded before and after an earthquake of MW 5.4 and its foreshocks and aftershocks that occurred during 22–28 May 2006 in the Mexicali Valley, Baja California, Mexico. The coseismic groundwater level changes could be attributed to static volumetric strain changes caused by the mainshock, except for one well, where the groundwater level change may have been affected also by a triggered slip event at a nearby fault. Some of the coseismic temperature changes were attributed to increased convection and mixing of groundwater by seismic shaking. Modeling of groundwater level records allowed the estimation of hydraulic diffusivity. The observed ground tilt and groundwater level anomalies in the area close to the source fault before and after the mainshock and before the aftershocks occurrence are explainable by the dilatancy–diffusion theory, or possibly by assuming the occurrence of a slow slip events and/or fault permeability changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source fault plane is indicated by a yellow rectangle (upper edge in bold). The black crosses mark the location of sites where the surface faulting was observed by Lira (2006) and Suárez-Vidal et al. (2007). The magenta triangles indicate the location of the vertical crackmeters at the Morelia fault (FMcr) and the Saltillo fault (EScr). The green triangles indicate the tiltmeter location (RCT, CPT and EHT). Filled and empty cyan circles indicate wells showing coseismic water level rise and drop, respectively. Thick solid red lines are known surface traces of tectonic faults: Cerro Prieto fault (CPF), Imperial fault (IF), Saltillo fault (SF), Morelia fault (MF), and Guerrero fault (GF). Dotted red lines are proposed surface fault traces based on mapped fissure zones from González et al. (1998); Glowacka et al. (2010); Lira (2006) and Suárez-Vidal et al. (2007), and well data (as the case of HF = H fault) from Lippmann et al. (1984). Black thick line frames the limits of the Cerro Prieto geothermal field. The Google Earth image is used as background

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 24 September 2018

    Due to an unfortunate mistake during the copy editing process the following reference is missing.

References

  • Agnew, D. C. (1986). Strainmeters and tiltmeters. Reviews of Geophysics, 24, 579–624.

    Article  Google Scholar 

  • Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.

    Article  Google Scholar 

  • Brodsky, E. E., Roeloffs, E., Woodcock, D., Gall, I., & Manga, M. (2003). A mechanism for sustained groundwater pressure changes induced by distant earthquakes. Journal of Geophysical Research, 108(B8), 2390. https://doi.org/10.1029/2002jb002321.

    Article  Google Scholar 

  • Cohen, S. C. (1996). Convenient formulas for determining dipslip fault parameters from geophysical observables. Bulletin of the Seismological Society of America, 86, 1642–1644.

    Google Scholar 

  • Cohen, S. C. (1997). Convenient Formulas for Determining Dip-Slip Fault Parameters from Geophysical Observables (ERRATUM). Bulletin of the Seismological Society of America, 87, 1081.

    Google Scholar 

  • Elkhoury, J. E., Brodsky, E. E., & Agnew, D. C. (2006). Seismic waves increase permeability. Nature, 441, 1135–1138.

    Article  Google Scholar 

  • Freund, L. B., & Barnett, D. M. (1976). A two dimensional analysis of surface deformation due to dip-slip faulting. Bulletin of the Seismological Society of America, 66, 667–675.

    Google Scholar 

  • Fuentes Arreazola, M. A., Ramírez Hernández, J., & Vázquez González, R. (2018). Hydrogeological properties estimation from groundwater level natural fluctuations analysis as a low-cost tool for the Mexicali Valley aquifer. Water, 10(5), 586. https://doi.org/10.3390/w10050586.

    Article  Google Scholar 

  • Fuentes Arreazola, M. A., & Vázquez González, R. (2016a). Análisis temporal y frecuencial del registro de nivel de agua en el pozo G-1-17 de monitoreo del acuífero superficial en inmediaciones del Campo Geotérmico de Cerro Prieto. Geotermia, Revista Mexicana de Geoenergía, 29(1), 15–27.

    Google Scholar 

  • Fuentes Arreazola, M. A., & Vázquez González, R. (2016b). Estimación de algunas propiedades geohidrológicas en un conjunto de pozos de monitoreo en el Valle de Mexicali, B.C. México. Ingeniería del Agua, 20(2), 87–101.

    Article  Google Scholar 

  • Glowacka, E. (1996). Vertical Creepment in the Southern Part of Imperial Fault (Mexico). In: Proc. of AGU Fall Meeting, San Francisco, p. F516.

  • Glowacka, E., Márquez Ramírez, V. H., Nava, F. A., Sarychikhina, O., Farfán, F., García Arthur, M. A., & Reyes, V. (2014). Slip events triggered on the Saltillo fault, Baja California, Mexico. In: Proc. Workshop “EARTHQUAKES: nucleation, triggering, and relationships with aseismic processes”, Cargèse, Corsica, France.

  • Glowacka, E., & Nava, F. A. (1996). Major earthquake in Mexicali valley, Mexico, and fluid extraction at cerro prieto geothermal field. Bulletin of the Seismological Society of America, 86, 93–105.

    Google Scholar 

  • Glowacka, E., Nava Pichardo, F. A., de Cossío, Díaz, Batani, G. E., Wong Ortega, V. M., & Farfán Sánchez, F. J. (2002). Fault slip, seismicity, and deformation in Mexicali Valley, Baja California, Mexico, after the M 7.1 1999 Hector Mine earthquake. Bulletin of the Seismological Society of America, 92(4), 1290–1299.

    Article  Google Scholar 

  • Glowacka, E., Navarro León, R., Márquez Ramírez, V. H., Sarychikhina, O., Farfán, F., García Arthur, M. A., & Gálvez, O. (2017). Aplicación de los inclinómetros para medir deformaciones locales causadas por subsidencia, eventos de creep o disparadas por los sismos. In: Proc. Reunión Anual de la Unión Geofísica Mexicana (RAUGM) 2017, Puerto Vallarta, Mexico.

  • Glowacka, E., Sarychikhina, O. Suárez-Vidal, F., Nava, F. A., Farfan, F., Cossio Battani, G. D., & Guzmán, M. (2007). Aseismic slip observed on the faults in Mexicali Valley, Baja California, Mexico. In: Proc. of AGU, Spring Meeting.

  • Glowacka, E., Sarychikhina, O., Márquez Ramírez, V. H., Nava, A., Farfán, F., & García Arthur, M. A. (2015), Deformation Around the Cerro Prieto Geothermal Field Recorded by the Geotechnical Instruments Network REDECVAM during 1996–2009. In: Proc. of World Geothermal Congress 2015, Melbourne, Australia.

  • Glowacka, E., Sarychikhina, O., Suárez, F., Nava, F. A., & Mellors, R. (2010). Anthropogenic subsidence in the Mexicali Valley, Baja California, Mexico, and slip on the Saltillo fault. Environmental Earth Sciences, 59(7), 1515–1524.

    Article  Google Scholar 

  • Glowacka, E., Sarychikhina, O., Vázquez González, R., Nava, F. A., Munguía, L., Farfan, F., Diaz De Cossio, G., & Garcia Arthur, M. A. (2008). Slow aseismic slip in the pull-apart center of Cerro Prieto (Baja California, Mexico), from geotechnical instruments and InSAR observations. In: Proc. of SSA 2008 Annual Meeting, Seismological Society of America, Santa Fe, New Mexico, USA. Seismological Research Letters 79, 282.

  • Glowacka, E., Sarychikhina, O., Vázquez, R., Vidal, A., Aguado Guzmán, C., López Hernández, M., Farfán, F., & Díaz de Cossío Batani, G. (2011). Coseismic and Aseismic Anomalies Recorded by Geotechnical Instruments in the Cerro Prieto Pull Apart Basin, Baja California, México. In: Proc. of SSA 2011 Annual Meeting, Seismological Society of America, Memphis, Tennessee, USA. Seismological Research Letters 82(2), 353–354.

  • González, J., Glowacka, E., Suárez, F., Quiñones, J. G., Guzmán, M., Castro, J. M., et al. (1998). Movimiento reciente de la Falla Imperial, Mexicali, B. C. Ciencia para todos Divulgare. Universidad Autónoma de Baja California, 6(22), 4–15.

    Google Scholar 

  • Grecksch, G., Roth, F., & Kumpel, H. J. (1999). Coseismic well-level changes due to the 1992 Roermond earthquake compared to static deformation of half-space solutions. Geophysical Journal International, 138(2), 470–478.

    Article  Google Scholar 

  • Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaka, S., Sasaki, Y., et al. (1995). Groundwater radon anomaly before the Kobe earthquake in Japan. Science, 269, 60–61.

    Article  Google Scholar 

  • King, Ch.-Y. (2018). Characteristics of a sensitive well showing pre-earthquake water-level changes. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-1855-4.

    Article  Google Scholar 

  • Kitagawa, Y., & Koizumi, N. (2000). A study on the mechanism of coseismic groundwater changes: interpretation by a groundwater model composed of multiple aquifers with different strain responses. Journal of Geophysical Research, 105, 19121–19134.

    Article  Google Scholar 

  • Kitagawa, Y., Koizumi, N., & Tsukuda, T. (1996). Comparison of postseismic groundwater temperature changes with earthquake-induced volumetric strain release: Yudani hot spring, Japan. Geophysical research letters, 23(22), 3147–3150.

    Article  Google Scholar 

  • Koizumi, N., Kitagawa, Y., Matsumoto, N., Takahashi, M., Sato, T., Kamigaichi, O., et al. (2004). Preseismic groundwater level changes induced by crustal deformations related to earthquake swarms off the east coast of Izu Peninsula, Japan. Geophysical Research Letters, 31, L10606. https://doi.org/10.1029/2004GL019557.

    Article  Google Scholar 

  • Kümpel, H. J. (1991). Poroelasticity: parameters reviewed. Geophysical Journal International, 105, 783–799. https://doi.org/10.1111/j.1365-246X.1991.tb00813.x.

    Article  Google Scholar 

  • Lippmann, M. J., Goldstein, N. E., Halfman, S. E., & Witherspoon, P. A. (1984). Exploration and development of the Cerro Prieto Geothermal Field. Journal Of Petroleum Technology, 36(9), 1579–1591.

    Article  Google Scholar 

  • Lira, H. (2006). Características del sismo del 23 de Mayo de 2006. Informe RE-023/2006. Comisión Federal de Electricidad, Residencia de Estudios, México.

  • Liu, C.-Y., Chia, Y., Chuang, P.-Y., Chiu, Y.-C., & Tseng, T.-L. (2018). Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes. Hydrogeology Journal, 26, 451–465. https://doi.org/10.1007/s10040-017-1684-z.

    Article  Google Scholar 

  • Lohman, R. B., & McGuire, J. J. (2007). Earthquake swarms driven by aseismic creep in the Salton Trough, California. Journal of Geophysical Research, 112, B04405. https://doi.org/10.1029/2006JB004596.

    Article  Google Scholar 

  • Luo, J., Sun, L., Zhang, W., Li, M., & Guo, X. (2011). Co-seismic groundwater-level and temperature changes of the 2011 Mw9. 0 Japan earthquake in Chinese mainland. Geodesy and Geodynamics, 2(4), 40–45.

    Article  Google Scholar 

  • Magistrale, H. (2002). The relation of southern San Jacinto fault zone to the Imperial and Cerro Prieto faults. Geological Society of America Special Paper, 365, 271–278.

    Google Scholar 

  • Manga, M., Beresnev, I., Brodsky, E. E., Elkhoury, J. E., Elsworth, D., Ingebritsen, S. E., et al. (2012). Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Reviews of Geophysics, 50, RG2004. https://doi.org/10.1029/2011rg00038.

    Article  Google Scholar 

  • Matsumoto, N., & Roeloffs, E. (2003). Hydrological response to earthquakes in the Haibara well, central Japan—II. Possible mechanism inferred from time-varying hydraulic properties. Geophysical Journal International, 155, 899–913. https://doi.org/10.1111/j.1365-246X.2003.02104.x.

    Article  Google Scholar 

  • McHugh, S., & Johnston, M. J. S. (1977). An analysis of coseismic tilt changes from an array in Central California. Journal of Geophysical Research, 82, 5692–5698.

    Article  Google Scholar 

  • Montgomery, D. R., & Manga, M. (2003). Streamflow and water well responses to earthquakes. Science, 300, 2047–2049.

    Article  Google Scholar 

  • Muir-Wood, R., & King, G. C. P. (1993). Hydrological signatures of earthquake strain. Journal of Geophysical Research, 98, 22035–22068.

    Article  Google Scholar 

  • Munguía, L., Glowacka, E., Suárez-Vidal, F., Lira-Herrera, H., & Sarychikhina, O. (2009). Near-fault strong ground motions recorded during the morelia normal-fault earthquakes of may 2006 in Mexicali Valley, BC, Mexico. Bulletin of the Seismological Society of America, 99(3), 1538–1551.

    Article  Google Scholar 

  • Nava, F. A., & Glowacka, E. (1999). Fault-slip triggering, healing, and viscoelastic afterworking in sediments in the Mexicali-Imperial Valley. Pure and Applied Geophysics, 156, 615–629.

    Article  Google Scholar 

  • Orihara, Y., Kamogawa, M., & Nagao, T. (2014). Preseismic Changes of the Level and Temperature of Confined Groundwater related to the 2011 Tohoku Earthquake. Scientific Reports, 4, 6907. https://doi.org/10.1038/srep06907.

    Article  Google Scholar 

  • Quilty, E. G., & Roeloffs, E. A. (1997). Water-level changes in response to the 20 December 1994 earthquake near Parkfield, California. Bulletin of the Seismological Society of America, 87(2), 310–317.

    Google Scholar 

  • Rice, J., & Cleary, M. P. (1976). Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Reviews of Geophysics and Space Physics, 14(2), 227–241.

    Article  Google Scholar 

  • Roeloffs, E. A. (1988). Hydrologic precursors to earthquakes: a review. Pure and Applied Geophysics, 126(2), 177–209.

    Article  Google Scholar 

  • Roeloffs, E. A. (1996). Poroelastic techniques in the study of earthquake-related hydrologic phenomena. Advances in Geophysics, 37, 135–195.

    Article  Google Scholar 

  • Roeloffs, E. A. (1998). Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. Journal of Geophysical Research, 103, 869–889.

    Article  Google Scholar 

  • Sarychikhina, O., Glowacka, E., Mellors, R., & Suárez-Vidal, F. (2011). Land subsidence in the Cerro Prieto Geothermal Field, Baja California, Mexico, from 1994 to 2005. An integrated analysis of DInSAR, leveling and geological data. Journal of Volcanology and Geothermal Research, 204, 76–90.

    Article  Google Scholar 

  • Sarychikhina, O., Glowacka, E., Mellors, R., Vazquez, R., Munguia, L., & Guzman, M. (2009). Surface Displacement and Groundwater Level Changes Associated with the 24 May 2006 Mw 5.4 Morelia Fault Earthquake, Mexicali Valley, Baja California, Mexico. Bulletin of the Seismological Society of America, 99(4), 2180–2189.

    Article  Google Scholar 

  • Sarychikhina, O., Glowacka, E., & Robles, B. (2018). Multi-sensor DInSAR applied to the spatiotemporal evolution analysis of ground surface deformation in Cerro Prieto basin, Baja California, Mexico, for the 1993–2014 period. Natural Hazards, 92, 225–255.

    Article  Google Scholar 

  • Sarychikhina, O., Glowacka, E., Robles, B., Nava, F. A., & Guzman, M. (2015). Estimation of seismic and aseismic deformation in Mexicali Valley, Baja California, Mexico, in the 2006–2009 Period, using precise leveling, DInSAR, geotechnical instruments data, and modeling. Pure and Applied Geophysics, 172, 3139–3162.

    Article  Google Scholar 

  • Scholz, C. H., Sykes, L. R., & Aggarwal, Y. P. (1973). Earthquake prediction: a physical basis. Science, 181(4102), 803–810.

    Article  Google Scholar 

  • Sil, S. (2006). Response of Alaskan wells to near and distant large earthquakes. M. Sc. Thesis, University of Alaska, Fairbanks, Alaska

  • Sil, S., & Freymuller, J. T. (2006). Well water level changes in Fairbanks, Alaska, due to the great Sumatra-Andaman earthquake. Earth Planets Space, 58, 181–184.

    Article  Google Scholar 

  • Simpson, D. W., Leith, W. S., & Scholz, C. H. (1988). Two types of reservoir-induced seismicity. Bulletin of the Seismological Society of America, 78, 2025–2040.

    Google Scholar 

  • Suárez-Vidal, F., Mendoza-Borunda, R., Nafarrete-Zamarripa, L., Rámirez, J., & Glowacka, E. (2008). Shape and dimensions of the Cerro Prieto pull-apart basin, Mexicali California, México, based on the regional seismic record and surface structures. International Geology Review, 50(7), 636–649.

    Article  Google Scholar 

  • Suárez-Vidal, F., Munguia-Orozco, L., Gonzalez-Escobar, M., Gonzalez-Garcia, J., & Glowacka, E. (2007). Surface rupture of the morelia fault near the cerro prieto geothermal Field, Mexicali, Baja California, Mexico, during the Mw 5.4 earthquake of 24 May 2006. Seismological Research Letters, 78(3), 394–399.

    Article  Google Scholar 

  • Takemoto, S. (1995). Recent results obtained from continuous monitoring of crustal deformation. Journal of Physics of the Earth, 43, 407–420.

    Article  Google Scholar 

  • Talwani, P., & Acree, C. (1985). Pore pressure diffusion and the mechanism of reservoir-induced seismicity. Pure and Applied Geophysics, 122, 947–965.

    Article  Google Scholar 

  • Tsunogai, U., & Wakita, H. (1995). Precursory chemical changes in ground water: Kobe earthquake, Japan. Science, 269, 61–63.

    Article  Google Scholar 

  • Vázquez González, R., Glowacka, E., & Díaz Fernández, A. (2005). Monitoreo continuo del nivel piezométrico en la zona geotérmica de Cerro Prieto. In: Proc. of IV Reunión Nacional de Ciencias de la Tierra, Juriquilla, Querétaro, Mexico.

  • Vázquez González, R., Ramírez Hernández, J., Martín Barajas, A., Carreón Diazconti, C., García Cueto, O. R., Miranda Reyes, F., Vázquez Hernández, F., Benítez Pérez, H., & Espinoza García, S. (1998). Estudio Geohidrológico del Campo Geotérmico de Cerro Prieto, Mexicali, B.C. CICESE-CFE. Contrato No. RCGP-CLS-002/97.

  • Wakita, H. (1975). Water wells as possible indicators of tectonic strain. Science, 189, 553–555.

    Article  Google Scholar 

  • Wakita, H., Igarashi, G., & Notsu, K. (1991). An anomalous radon decrease in groundwater prior to an M6. 0 earthquake: a possible precursor? Geophysical Research Letters, 18(4), 629–632.

    Article  Google Scholar 

  • Wang, H. F. (1993). Quasi-static poroelastic parameters in rock and their geophysical applications. Pure and Applied Geophysics, 141(2), 269–286.

    Article  Google Scholar 

  • Wang, C.-Y., & Barbourb, A. J. (2017). Influence of pore pressure change on coseismic volumetric strain. Earth and Planetary Science Letters, 275, 152–159.

    Article  Google Scholar 

  • Wang, C.-Y., & Chia, Y. (2008). Mechanism of water level changes during earthquakes: near field versus intermediate field. Geophysical Research Letters, 35, L12402. https://doi.org/10.1029/2008GL034227.

    Article  Google Scholar 

  • Wang, R., Lorenzo-Martín, F., & Roth, F. (2003). Computation of deformation induced by earthquakes in a multi-layered elastic crust—FORTRAN programs EDGRN/EDCMP. Computers & Geosciences, 29(2), 195–207.

    Article  Google Scholar 

  • Wang, C.-Y., & Manga, M. (2010). Hydrologic responses to earthquakes—a general metric. Geofluids, 10, 206–216.

    Article  Google Scholar 

  • Wang, C.-Y., Manga, M., Wang, C.-H., & Chin, C.-H. (2012). Earthquakes and subsurface temperature changes near an active mountain front. Geology, 40, 119–122. https://doi.org/10.1130/G32565.1.

    Article  Google Scholar 

  • Wei, S., Avouac, J. P., Hudnut, K. W., Donnellan, A., Parker, J. W., Graves, R., et al. (2015). The 2012 Brawley swarm triggered by injection-induced aseismic slip. Earth and Planetary Science Letters, 422, 115–125.

    Article  Google Scholar 

  • Wyatt, F. K. (1988). Measurements of coseismic deformation in southern California: 1972–1982. Journal of Geophysical Research, 93, 7923–7942.

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored in part by Consejo Nacional de Ciencia y Tecnología (CONACYT), project number 45997-F, and CICESE internal funds. Authors appreciate the access to seismicity data from RESNOM. Our thanks to Francisco Farfán, Guillermo Diaz de Cossio, Luis Orozco y Oscar Gálvez for help during the fieldwork and to Miguel Angel Garcia Arthur and students Adriana Perez Martinez and Antonio Garcia Hernandez for help in data processing. The authors greatly acknowledge the editor, Dr. Chi-Yu King, and one anonymous reviewer for their valuable comments and suggestions which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Sarychikhina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarychikhina, O., Glowacka, E., Vázquez González, R. et al. Analysis and interpretation of earthquake-related groundwater response and ground deformation: a case study of May 2006 seismic sequence in the Mexicali Valley, Baja California, Mexico. Pure Appl. Geophys. 175, 2485–2502 (2018). https://doi.org/10.1007/s00024-018-1925-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1925-7

Keywords

Navigation