Longitudinal Asymmetry of the Occurrence of the Plasma Irregularities over African Low-Latitude Region

Abstract

This study presents the results of plasma irregularities over African equatorial and low-latitude region under various solar-geophysical conditions that gave rise to an east–west longitudinal asymmetry. The data used for this research were obtained from the ground-based GNSS receiver stations within African equatorial ionization anomaly region, for 3 consecutive years (2011–2013) in the ascending phase of solar cycle ♯24. The study considered specific days of different geomagnetic activities in equinoctial month of October 2013. In addition, the five most geomagnetically disturbed and quietest days in each month for the 3 consecutive years and the annual mean for each year were considered in this study. Rate of change of total electron content index (ROTI) was used to access the level of the ionospheric irregularities activity. The presence of ionospheric irregularities was taken when the difference between the local daytime (0600–1800) and nighttime (1900–2400) mean ROTI is above 0.075 TECu/min. The study revealed that African equatorial ionospheric irregularities’ occurrence is larger in the west sector and that irregularities activity could be sometimes 4–40% lowered or inhibited during the disturbed conditions in the African equatorial eastern sector in comparison to the western region. The asymmetry observed in the region could be attributed to transequatorial meridional winds and probably the east–west asymmetry in the strength of the EEJ current in the region.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Aarons, J. (1982). Global morphology of ionospheric scintillation. Proceedings of the IEEE, 4(70), 360–378.

    Article  Google Scholar 

  2. Aarons, J. (1991). The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storm. Radio Science, 26(4), 1131–1149.

    Article  Google Scholar 

  3. Aarons, J. (1993). The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence. Space Science Reviews, 63, 209–243. https://doi.org/10.1007/BF00750769.

    Article  Google Scholar 

  4. Abdu, M. A. (2001). Outstanding problems in the equatorial ionosphere-thermosphere electrodynamics relevant to spread F. Journal of Atmospheric and Terrestrial Physics, 63, 869–884.

    Article  Google Scholar 

  5. Abdu, M. A., Batistita, I. S., Takahashi, H., MacDougall, J., Sobral, J. H., Medeiros, A. F., et al. (2003). Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brasilian sector. Journal of Geophysical Research, 108(A12), 1449. https://doi.org/10.1029/2002JA009721.

    Article  Google Scholar 

  6. Abdu, M. A., Bittencourt, J. A., & Batista, I. S. (1981). Magnetic declination control of the equatorial F region dynamo electric field development and spread F. Journal of Geophysical Research, 86, 11443–11446.

    Article  Google Scholar 

  7. Abdu, M. A., Iyer, K. N., de Medeiros, R. T., Bastita, I. S., & Sobral, J. H. A. (2006). Thermospheric meridional wind control of equatorial spread F and evening prereversal electric field. Geophysical Research Letters, 33, L07106. https://doi.org/10.1029/2005gl024835.

    Article  Google Scholar 

  8. Abe, O. E., Otero Villamide, X., Paparini, C., Ngaya, R. H., Radicella, S. M., & Nava, B. (2017a). Signature of ionospheric irregularities under different geophysical conditions on SBAS performance in the western African low-latitude region. Annales Geophysicae, 35, 1–9.

    Article  Google Scholar 

  9. Abe, O. E., Otero Villamide, X., Paparini, C., Ngaya, R. H., Radicella, S. M., & Nava, B. (2017b). The storm-time assessment of GNSS-SBAS performance within low latitude African region using a testbed-like platform. Astrophysics and Space Science, 362, 170. https://doi.org/10.1007/s10509-017-3150-8.

    Article  Google Scholar 

  10. Anderson, D. N., & Roble, R. G. (1981). Neutral wind effect on the equatorial F-region ionosphere. Journal of Atmospheric and Terrestrial Physics, 43, 835.

    Article  Google Scholar 

  11. Arbesser-Rastburg, B. (2006). The Galileo single frequency ionospheric correction algorithm. http://sidc.oma.be/esww3/presentations/Session4/Arbesser.pd.

  12. Basu, S., & Basu, S. (1981). Equatorial scintillation—A review. Journal of Atmospheric and Terrestrial Physics, 43, 473–483.

    Article  Google Scholar 

  13. Basu, S., Groves, K. M., Quinn, J. M., & Doherty, P. (1999). A comparison of TEC fluctuation and scintillation at Ascension Island. Journal of Atmospheric and Solar-Terrestrial Physics, 61, 1219–1226.

    Article  Google Scholar 

  14. Beach, T. L., & Kintner, P. M. (1999). Simultaneous global positioning system observations of equatorial scintillations and total electron content fluctuations. Journal of Geophysical Research (Space Physics), 104(A10), 22553–22565. https://doi.org/10.1029/1999ja900220.

    Article  Google Scholar 

  15. Beatty, T. J., Collins, R. L., Gardner, C. S., Hostetler, C. A., & Sechrist, C. F., Jr. (1989). Simultaneous radar and lidar observations of sporadic E and Na layers at Arecibo. Geophysical Research Letters, 16, 1019–1022.

    Article  Google Scholar 

  16. Bhattacharya, S., Purohit, P.K., Tiwari, R., & Gwal, A.K. (2010). Study of GPS based ionospheric scintillation and its effect on dual frequency receiver. Journal of Engineering, Science & Management Education, 1, 55–61.

    Google Scholar 

  17. Blanc, M., & Richmond, A. D. (1980). The ionospheric disturbance dynamo. Journal of Geophysical Research, 85(1), 1669–1686.

    Article  Google Scholar 

  18. Carrano, C. S., & Groves, K. (2007). TEC gradients and fluctuations at low latitudes measured with high data rate GPS receivers. Proceedings of the 63rd annual meeting of the Institute of Navigation, Cambridge, MA, pp. 156–163.

  19. Cervera, M. A., & Thomas, R. M. (2006). Latitudinal and temporal variation of equatorial ionospheric irregularities determined from GPS scintillation observations. Annales Geophysicae, 24(12), 3329–3341.

    Article  Google Scholar 

  20. Chandra, K. R., Srinivas V. S., & Sarma, A. D. (2009). Investigation of ionospheric gradients for GAGAN application. Earth Planets Space, 61, 633–635.

    Article  Google Scholar 

  21. Clemesha, B. R. (1964). An investigation of the irregularities in the F-region associated with equatorial type spread-F. Journal of Atmospheric and Terrestrial Physics, 26, 91–112.

    Article  Google Scholar 

  22. Dymond, K. F. (2012). Global observations of L band scintillation at solar minimum made by COSMIC. Radio Science, 47, RS0L18. https://doi.org/10.1029/2011rs004931.

    Article  Google Scholar 

  23. Fejer, B. G., Jensen, J. W., & Su, S.-Y. (2008). Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations. Journal of Geophysical Research, 113, A05304. https://doi.org/10.1029/2007JA012801.

    Article  Google Scholar 

  24. Fejer, B. G., Scherliess, L., & de Paula, E. R. (1999). Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. Journal of Geophysical Research, 104(4A), 19859–19869.

    Article  Google Scholar 

  25. Garcia-Fernandez, M., & Tsuda, T. (2006). A global distribution of sporadic E events revealed by means of CHAMP-GPS occultations. Earth Planets Space, 58, 33–36.

    Article  Google Scholar 

  26. Heelis, R. A., Kendall, P. C., Moffett, R. J., Windie, D. W., & Rishbeth, H. (1974). Electrical coupling of the E- and F-regions and its effects on F-region drifts and winds. Planetary and Space Science, 22, 743–756.

    Article  Google Scholar 

  27. Hei, M. A., Heelis, R. A., & McClure, J. P. (2005). Seasonal and longitudinal variation of large-scale topside equatorial plasma depletions. Journal of Geophysical Research, 110, A12315. https://doi.org/10.1029/2005JA011153.

    Article  Google Scholar 

  28. Huang, F., Lei, J., & Dou, X. (2017). Daytime ionospheric longitudinal gradients seen in the observations from a regional BeiDou GEO receiver network. Journal of Geophysical Research: Space Physics, 122, 6552–6561. https://doi.org/10.1002/2017JA023881.

    Article  Google Scholar 

  29. Hysell, D. L. (2000). An overview and synthesis of plasma irregularities in equatorial spread F. Journal of Atmospheric and Solar-Terrestrial Physics, 62(12), 1037–1056.

    Article  Google Scholar 

  30. Jacobsen, K. S., & Dahnn, M. (2014). Statistical of ionospheric disturbances and their correlation with GNSS positioning errors at high latitudes. Journal of Space Weather and Space Climate, 4, A27-p1–A27-p10. https://doi.org/10.1051/swsc/2014024.

    Article  Google Scholar 

  31. Jain, R. K., & Das, A. C. (1978). Nonlinear Rayleigh–Taylor instability in partially ionized plasma and the equatorial spread-F. Proceedings of the Indian Academy of Sciences, 87(2), 1–12.

    Article  Google Scholar 

  32. Kamra, A. K. (1972). Measurements of the electrical properties of dust storms. Journal of Geophysical Research, 77(30), 5856–5869. https://doi.org/10.1029/JC077i030p05856.

    Article  Google Scholar 

  33. Kelleher, R. F., & Skinner, N. J. (1971). Studies of F region irregularities at Nairobi, 2, by direct backscatter t 27.8 MHz. Annals of Geophysics., 27(2), 195–200.

    Google Scholar 

  34. Kelley, M. C., Haldoupis, C., Nicolls, M. J., Makela, J. J., Belehaki, A., Shalimov, S., et al. (2003). Case studies of coupling between the E and F regions during unstable sporadic-E conditions. Journal of Geophysical Research, 108(A12), 1447. https://doi.org/10.1029/2003JA009955.

    Article  Google Scholar 

  35. Krankowski, A., Shagimuratov, I., Baran, L., Ephishov, I., & Tepenitzyna, N. (2006). The occurrence of polar cap patches in TEC fluctuations detected using GPS measurements in southern hemisphere. Advances in Space Research, 38(11), 2601–2609. https://doi.org/10.1016/j.asr.2005.12.006.

    Article  Google Scholar 

  36. Kudeki, E., Farley, D. T., Fejer, B. G., & Lerkic, H. M. (1981). Interferometer studies of equatorial F-region irregularities and drifts. Geophysical Research Letters, 8(4), 377–380. https://doi.org/10.1029/GL008i004p00377.

    Article  Google Scholar 

  37. Maruyama, T., & Matuura, N. (1984). Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles. Journal of Geophysical Research, 89(A12), 10903–10912.

    Article  Google Scholar 

  38. Maruyama, T., Saito, S., Kawamura, M., Nozaki, K., Krall, J., & Huba, J. D. (2009). Equinoctial asymmetry of a low-latitude ionosphere-thermosphere system and equatorial irregularities: Evidence for meridional wind control. Annales Geophysicae, 27, 2027–2034.

    Article  Google Scholar 

  39. Mungufeni, P., Habarulema, J., & Jurua, E. (2016). Trends of ionospheric irregularities over African low latitude region during quiet geomagnetic conditions. Journal of Atmospheric and Solar-Terrestrial Physics, 138–139, 261–267.

    Article  Google Scholar 

  40. Neilson, D. L., & Crochet, M. (1974). Ionospheric propagation of HF and VHF radio waves across the geomagnetic equator. Reviews of Geophysics and Space Physics, 12, 688–702.

    Article  Google Scholar 

  41. Nishioka, M. A., Saito, A., & Tsugawa, T. (2008). Occurrence characteristics of plasma bubbles derived from global ground-based GPS receiver networks. Journal of Geophysical Research, 113, A05301. https://doi.org/10.1029/2007JA012605.

    Article  Google Scholar 

  42. Oladipo, O. A., & Schuler, T. (2013). Equatorial ionospheric irregularities using GPS TEC derived index. Annals of Geophysics, 56(5), A0565. https://doi.org/10.4401/ag-6247.

    Article  Google Scholar 

  43. Ossakow, S. L. (1979). Ionospheric irregularities. Reviews of Geophysics and Space Physics. https://doi.org/10.1029/RG017i004p00521

    Article  Google Scholar 

  44. Park, C. G., & Dejnakarintra, M. (1973). Penetration of thundercloud electric fields into the ionosphere and magnetosphere: 1. Middle and subauroral latitudes. Journal of Geophysical Research, 78(28), 6623–6633. https://doi.org/10.1029/JA078i028p06623.

    Article  Google Scholar 

  45. Pi, X., Mannucci, A. J., Lindqdwister, U. J., & Ho, C. M. (1997). Monitoring of global ionospheric irregularities using the worldwide GPS. Geophysical Research Letters, 24(18), 2283–2286. https://doi.org/10.1029/97gl02273.

    Article  Google Scholar 

  46. Rishbeth, H. (1971). The F-layer dynamo. Planetary and Space Science, 19, 263.

    Article  Google Scholar 

  47. Singh, S., Bamgboye, D. K., McClure, J. P., & Johnson, F. S. (1997). Morphology of equatorial plasma bubbles. Journal of Geophysical Research, 102(A49), 20019–20029.

    Article  Google Scholar 

  48. Sobral, J. H. A., Abdu, M. A., Takahashi, H., Taylor, M. J., de Paula, E. R., Zamlutti, C. J., et al. (2002). A study of the ionospheric plasma bubbles climatology over Brazil, based on 22 years (1977–1998) of IO 630 nm airglow observation. Journal of Atmospheric and Solar-Terrestrial Physics, 64(12–14), 1517–1524.

    Article  Google Scholar 

  49. Sripathi, S., Kakad, B., & Bhattacharyya, A. (2011). Study of equinoctial asymmetry in the equatorial spread F (ESF) irregularities over Indian region using multi-instrument observations in the descending phase of solar cycle 23. Journal of Geophysical Research: Space Physics.. https://doi.org/10.1029/2011ja016625.

    Article  Google Scholar 

  50. Stephan, A. W., Colerico, M., Mendillo, M., Reinisch, B. W., & Anderson, D. (2002). Suppression of equatorial spread F by sporadic E. Journal of Geophysical Research, 107(A2), 1021. https://doi.org/10.1029/2001JA000162.

    Article  Google Scholar 

  51. Stolle, C., Luhr, H., & Fejer, B. G. (2008). Relation between the occurrence rate of ESF and the equatorial vertical plasma drift velocity at sunset derived from global observations. Annales Geophysicae, 26, 3979–3988. https://doi.org/10.5194/angeo-26-3979-2008.

    Article  Google Scholar 

  52. Stoneback, R. A., & Heelis, R. A. (2014). Identifying equatorial ionospheric irregularities using in situ ion drift. Annales Geophysicae, 32, 421–429. https://doi.org/10.5194/angeo-32-421-2014.

    Article  Google Scholar 

  53. Subbarao, K. S. V., & Krishnamurthy, B. V. (1994). Seasonal variations of equatorial spread-F. Annales Geophysicae, 12, 33–39.

    Google Scholar 

  54. Sultan, P. J. (1996). Linear theory and modelling of the Rayleigh–Taylor instability leading to the occurrence of equatorial spread-F. Journal of Geophysical Research, 101, 26875–26891.

    Article  Google Scholar 

  55. Tsunada, R. T., Livingston, R. C., & Rino, C. L. (1981). Evidence of a velocity shear in bulk plasma motion associated with the postsunset rise of the equatorial F layer. Geophysical Research Letters, 8, 807–810.

    Article  Google Scholar 

  56. Tsunoda, R. (1985). Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity. Journal of Geophysical Research, 90(A1), 447–456. https://doi.org/10.1029/JA090iA01p00447.

    Article  Google Scholar 

  57. Tsunoda, R. T. (2007). Seeding of equatorial plasma bubbles with electric fields from an Es-layer instability. Journal of Geophysical Research, 112, A06304. https://doi.org/10.1029/2006JA012103.

    Article  Google Scholar 

  58. Woodman, R. F. (2009). Spread F—An old equatorial aeronomy problem finally resolved? Annales Geophysicae, 27(5), 1915–1934.

    Article  Google Scholar 

  59. Xiong, C., Stolle, C., & Lühr, H. (2016). The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities. Space Weather. https://doi.org/10.1002/2016SW001439.

    Article  Google Scholar 

  60. Xiong, B., Wan, W.-X., Ning, B.-Q., Yuan, H., & Li, G.-Z. (2006). A Comparison and analysis of the S4 index, C/N and Roti over Sanya. Chinese Journal of Geophysics, 50(6), 1414–1424. https://doi.org/10.1002/cjg2.1161.

    Article  Google Scholar 

  61. Yizengaw, E., Retterer, J., Pacheco, E. E., Roddy, P., Groves, K., Caton, R., et al. (2013). Postmidnight bubbles and scintillations in the quiet-time June solstice. Geophysical Research Letters. https://doi.org/10.1002/2013GL058307.

    Article  Google Scholar 

  62. Zalesak, S. T., Ossakow, S. L., & Chaturved, P. K. (1982). Nonlinear equatorial spread F: The effect of neutral winds and background Pedersen conductivity. Journal of Geophysical Research, 87(A1), 151–166.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Office of the Surveyor General of the Federal Government (OSGoF) of Nigeria (NIGNET network), the administrator of IGS, AFREF, SONEL networks, and Australian Government for preserving the GNSS and geomagnetic data for make it available for the public scientific community usage. The authors also thank the Editor and the anonymous reviewers for their objective assessment of the paper and their valuable suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. E. Abe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abe, O.E., Rabiu, A.B. & Radicella, S.M. Longitudinal Asymmetry of the Occurrence of the Plasma Irregularities over African Low-Latitude Region. Pure Appl. Geophys. 175, 4355–4370 (2018). https://doi.org/10.1007/s00024-018-1920-z

Download citation

Keywords

  • Low-latitude
  • ionospheric irregularities
  • asymmetry
  • ROTI