Skip to main content
Log in

Mediterranean Surface Geostrophic Circulation from Satellite Gravity and Altimetry Observations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We present a data-based approach to study the mean and the climatology of the surface geostrophic currents (SGC) for the Mediterranean Sea, using satellite ocean surface altimetry observations for 22 years (1993–2014) in conjunction with the geoid solution derived from the space mission of GOCE (gravity field and steady-state ocean circulation explorer; Release 4). The resultant product is the Mediterranean SGC velocity field, that we denote by SGC\(_{GOCE-Alt}\), given in spatial resolution of 1/4\({^\circ }\) and monthly time resolution. It exhibits smaller scales and lower dynamic intensities in comparison with open oceans, making the Mediterranean Sea a challenging test case for our satellite-based analysis. The mean SGC\(_{GOCE-Alt}\) is largely consistent with previous findings but with additional circulation features in time and space. We also compare our results with the SGC output from the regional hydrodynamic model of Mercator that assimilates satellite altimetry, satellite sea surface temperature, and in situ observations. The prominent SGC features agree well not only on the large and subbasin scales but also in the widespread mesoscale dynamics. We find, however, comparatively lower intensities than the Mercator model in general, with differences that are on average around 7 cm/s, but might reach 13 cm/s in some coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugre, Y., et al. (2015). Improved sea level record over the satellite altimetry era (1993–2010) from the climate change initiative project. Ocean Science, 11, 6782. https://doi.org/10.5194/os-11-67-2015.

    Article  Google Scholar 

  • Adani, M., Dobricic, S., & Pinardi, N. (2011). Quality assessment of a 1985–2007 Mediterranean sea reanalysis. Journal of Atmospheric and Oceanic Technology, 28(4), 569–589.

    Article  Google Scholar 

  • Andersen, O.B., Knudsen, P., and Stenseng, L. (2015). The DTU13 MSS (mean sea surface) and MDT (mean dynamic topography) from 20 years of satellite altimetry. International Association of Geodesy Symposia (pp. 1-10). Springer, Berlin. https://doi.org/10.1007/1345-2015-182.

  • Artegiani, A., Paschini, E., Russo, A., Bregant, D., Raicich, F., & Pinardi, N. (1997). The adriatic sea general circulation. Part ii: Baroclinic circulation structure. Journal of Physical Oceanography, 27(8), 15151532.

    Google Scholar 

  • Bèranger, K., Mortier, L., Gasparini, G.-P., Gervasio, L., Astraldi, M., & Crèpon, M. (2004). The dynamics of the Sicily strait: A comprehensive study from observations and models. Deep Sea Research II, 51, 411440.

    Article  Google Scholar 

  • Bessières, L., Rio, M. H., Dufau, C., Boone, C., & Pujol, M. I. (2013). Ocean state indicators from MyOcean altimeter products. Ocean Science, 9(3), 545–560. https://doi.org/10.5194/os-9-545-2013.

    Article  Google Scholar 

  • Bingham, R. J., Knudsen, P., Andersen, O., & Pail, R. (2011). An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophysical Research Letters, 38, L01606. https://doi.org/10.1029/2010GL045633.

    Article  Google Scholar 

  • Birol, F., Cancet, M., & Estournel, C. (2010). Aspects of the seasonal variability of the Northern Current (NW Mediterranean Sea) observed by altimetry. Journal of Marine Systems, 81, 297–311. https://doi.org/10.1016/j.jmarsys.2010.01.005.

    Article  Google Scholar 

  • Borzelli, G. L. E., Gacic, M., Cardin, V., & Civitarese, G. (2009). Eastern Mediterranean transient and reversal of the Ionian sea circulation. Geophysical Research Letters, 36, L15108. https://doi.org/10.1029/2009GL039261.

    Article  Google Scholar 

  • Bouffard, J., Vignudelli, S., Cipollini, P., & Menard, Y. (2008). Exploiting the potential of an improved multimission altimetric data set over the coastal ocean. Geophysical Research Letters, 35, L10601. https://doi.org/10.1029/2008GL033488.

    Article  Google Scholar 

  • Bouffard, J., Vignudelli, S., Herrmann, M., Lyard, F., Marsaleix, P., Mnard, Y., et al. (2008). Comparison of ocean dynamics with a regional circulation model and improved altimetry in the North-western Mediterranean. Terrestrial Atmospheric and Oceanic Sciences, 19, 117–133. https://doi.org/10.3319/TAO.2008.19.1-2.117(SA).

    Article  Google Scholar 

  • Bouffard, J., Roblou, L., Birol, F., Pascual, A., Feneglio-Marc, L., Cancet, M., et al. (2011). Introduction and assessment of improved coastal altimetry strategies: Case study over the North Western Mediterranean Sea. In S. Vignudelli, et al. (Eds.), Coastal Altimetry. Berlin: Springer.

    Google Scholar 

  • Buongiorno Nardelli, B., Cavalieri, O., Rio, M.-H., & Santoleri, R. (2006). Subsurface geostrophic velocities inference from altimeter data: Application to the Sicily Channel (Mediterranean Sea). Journal of Geophysical Research, 111, C04007. https://doi.org/10.1029/2005JC003191.

    Article  Google Scholar 

  • Del Rio Vera, J., Criado-Aldeanueva, F., Lafuente, J., & Soto-Navarro, J. (2009). A new insight on the decreasing sea level trend over the Ionian basin in the last decades. Global and Planetary Change, 68, 232–235. https://doi.org/10.1016/j.gloplacha.2009.04.002.

    Article  Google Scholar 

  • Durrieu de Madron, X., et al. (2011). Marine ecosystems responses to climatic and anthropogenic forcings in the Mediterranean. Progress in Oceanography, 91, 97–166. https://doi.org/10.1016/j.pocean.2011.02.003.

    Article  Google Scholar 

  • Förste, C., Bruinsma, S., Shako, R., Marty, J.-C., Flechtner, F., Abrikosov, O., Dahle, C., Lemoine, J.-M., Neumayer, K.H., Biancale, R., Barthelmes, F., Knig, R., Balmino, G. (2011). EIGEN-6 a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophysical Research Abstracts 13:EGU2011-3242-2, EGU General Assembly

  • Gaĉić, M., Eusebi Borzelli, G. L., Civitarese, G., Cardin, V., & Yari, S. (2010). Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophysical Research Letters, 37, L09608.

    Article  Google Scholar 

  • Ioannou, A., Stegner, A., Le Vu, B., Taupier-Letage, I., & Speich, S. (2017). Dynamical evolution of intense Ierapetra eddies on a 22 year long period. Journal of Geophysical Research: Oceans, 122, 92769298. https://doi.org/10.1002/2017JC013158.

    Article  Google Scholar 

  • IPCC, 5th Assessment report (2013). Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, Cambridge University Press, Cambridge.

  • Jebri, F., Birol, F., Zakardjian, B., Bouffard, J., & Sammari, C. (2016). Exploiting coastal altimetry to improve the surface circulation scheme over the central Mediterranean Sea. Journal of Geophysical Research: Oceans, 121, 4888–4909. https://doi.org/10.1002/2016JC011961.

    Article  Google Scholar 

  • Jebri, F., Zakardjian, B., Birol, F., Bouffard, J., Jullion, L., & Sammari, C. (2017). Interannual variations of surface currents and transports in the Sicily channel derived from coastal altimetry. Journal of Geophysical Research: Oceans, 122, 8330–8353. https://doi.org/10.1002/2017JC012836.

    Article  Google Scholar 

  • Knudsen, P., Bingham, R., Andersen, O., & Marie-Helene, Rio. (2011). A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. Journal of Geodesy, 85, 861–879. https://doi.org/10.1007/s00190-011-0485-8.

    Article  Google Scholar 

  • Korres, G., Pinardi, N., & Lascaratos, A. (2000). The ocean response to low frequency interannual atmospheric variability in the Mediterranean Sea, Part I: Sensitivity experiments and energy analysis. Journal of Climate, 13, 705–731.

    Article  Google Scholar 

  • Kundu, P. J. (1975). Ekman veering observed near the ocean bottom. Journal of Physical Oceanography, 6, 238–242.

    Article  Google Scholar 

  • Malanotte-Rizzoli, P., Manca, B. B., Ribera d Acala, M., et al. (1999). The Eastern Mediterranean in the 80s and in the 90s: The big transition in the intermediate and deep circulations. Dynamics of Atmospheres and Oceans, 29, 365–395.

    Article  Google Scholar 

  • Marullo S., Santoleri R., and Bignami F. (1994). The surface characteristics of the Tyrrhenian sea : Historical satellite data analysis. . In La Violette, P. E.(Ed), Seasonal and interannual variability of the Western Mediterranean sea, Coastal and Estuarine Studies, 46, pp 135–154.

  • Menna, M., Poulain, P. M., Mauri, E., Sampietro, D., Panzetta, F., Reguzzoni, M., et al. (2013). Mean surface geostrophic circulation of the Mediterranean Sea estimated from GOCE geoid models and altimetric mean sea surface: initial validation and accuracy assessment. Bollettino di Geofisica Teorica e Applicata, 54, 347–365. https://doi.org/10.4430/bgta0104.

    Article  Google Scholar 

  • Millot, C. (1985). Some features of the Algerian current. Journal of Geophysical Research, 90(C4), 7169–7176.

    Article  Google Scholar 

  • Millot, C., & Taupier-Letage, I. (2005). Circulation in the Mediterranean Sea. In A. Saliot (Ed.), The Handbook of Environmental Chemistry book series (volume 5K) (pp. 29–66). Heidelberg: Springer. https://doi.org/10.1007/b107143.

    Chapter  Google Scholar 

  • Mkhinini, N., Coimbra, A. L. S., Stegner, A., Arsouze, T., Taupier-Letage, I., & Béranger, K. (2014). Long-lived mesoscale eddies in the eastern Mediterranean Sea: Analysis of 20 years of AVISO geostrophic velocities. Journal of Geophysical Research: Oceans, 119, 86038626. https://doi.org/10.1002/2014JC010176.

    Article  Google Scholar 

  • Morrow, R., Carret, A., Birol, F., Nino, F., Valladeau, G., Boy, F., et al. (2017). Observability of fine-scale ocean dynamics in the northwestern Mediterranean Sea. Ocean Science, 13, 1329.

    Article  Google Scholar 

  • Poulain, P.-M. (2001). Adriatic Sea surface circulation as derived from drifter data between 1990 and 1999. Journal of Marine Systems, 29, 332.

    Google Scholar 

  • Poulain, P.-M., Menna, M., & Mauri, E. (2012). Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. Journal of Physical Oceanography, 42, 973–990.

    Article  Google Scholar 

  • Poulain, P.-M., Bussani, A., Gerin, R., Jungwirth, R., Mauri, E., Menna, M., et al. (2013). Mediterranean surface currents measured with drifters: From basin to subinertial scales. Oceanography, 26(1), 3847. https://doi.org/10.5670/oceanog.2013.03.

    Article  Google Scholar 

  • Rinaldi, E., Buongiorno Nardelli, B., Zambianchi, E., Santoleri, R., & Poulain, P. M. (2010). Lagrangian and Eulerian observations of the surface circulation in the Tyrrhenian Sea. Journal of Geophysical Research, 115, 04024. https://doi.org/10.1029/2009JC005535.

    Article  Google Scholar 

  • Robinson, A. R., Golnaraghi, M., Leslie, W. G., Artegiani, A., Hecht, A., Lazzoni, E., et al. (1991). The eastern Mediterranean general circulation: features, structure and variability. Dynamics of Atmospheres and Oceans, 15, 215240.

    Article  Google Scholar 

  • Robinson, A. R., Sellschopp, J., Warn-Varnas, A., Leslie, W. G., Lozano, C. J., Haley, P. J, Jr., et al. (1999). The Atlantic Ionian Stream. Journal of Marine Systems, 20, 129156.

    Article  Google Scholar 

  • Robinson, A. R., Leslie, W. G., Theocharis, A., & Lascaratos, A. (2001). Mediterranean Sea Circulation. Cambridge: Academic Press. https://doi.org/10.1006/rwos.2001.0376.

    Book  Google Scholar 

  • Roether, W., Klein, B., Manca, B., Theocharis, A., & Kioroglou, A. (2007). Transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s. Progress in Oceanography, 74, 540571.

    Article  Google Scholar 

  • Roussenov, V., Stanev, E., Artale, V., & Pinardi, N. (1995). A seasonal model of the Mediterranean Sea general circulation. Journal of Geophysical Research, 100(C7), 13515–13538. https://doi.org/10.1029/95JC00233.

    Article  Google Scholar 

  • Sánchez-Reales, J. M., Vigo, M. I., Jin, S. G., & Chao, B. F. (2012). Global surface geostrophic currents from satellite altimetry and GOCE geoid. Marine Geodesy, 35(sup1), 175–189.

    Article  Google Scholar 

  • Sánchez-Reales, J. M., Vigo, M. I., & Trottini, M. (2014). Ocean surface geostrophic circualtion climatology and annual variations inferred from aatellite Altimetry and GOCE gravity data. Pure and Applied Geophysics, 173, 849–860. https://doi.org/10.1007/s00024-014-0981-x.

    Article  Google Scholar 

  • Sánchez-Reales, J. M., Andersen, O. B., & Vigo, M. I. (2016). Improving surface geostrophic current from a GOCE-derived mean dynamic topography using edge-enhancing diffusion filtering. Pure and Applied Geophysics, 173, 871–884. https://doi.org/10.1007/s00024-015-1050-9.

    Article  Google Scholar 

  • Snaith, H. M., Allen, J., Alderson, S., & Guymer, T. (2003). Monitoring of the eastern alboran gyre using combined altimetry and in situ data. Philosophical Transactions of the Royal Society London A, 361, 6570.

    Article  Google Scholar 

  • Soto-Navarro, J., Criado-Aldeanueva, F., García-Lafuente, J., & Sánchez-Román, A. (2010). Estimation of the Atlantic inflow through the Strait of Gibraltar from climatological and in situ data. Journal of Geophysical Research, 115, C10023. https://doi.org/10.1029/2010JC006302.

    Article  Google Scholar 

  • Sudre, J., Maes, C., & Garcon, V. (2016). On the global estimates of geostrophic and Ekman surface currents. Limnology and Oceanography: Fluids and Environments, 3, 120. https://doi.org/10.1215/21573689-2071927.

    Article  Google Scholar 

  • Vélez-Belch, P., Vargas-Yez, M., & Tintor, J. (2005). Observation of a western alborn gyre migration event. Progress in Oceanography, 66(24), 190210.

    Google Scholar 

  • Vigo, I., García, D., & Chao, B. F. (2005). Change of sea level trend in the Mediterranean and Black seas. Journal of Marine Research, 63, 10851100.

    Article  Google Scholar 

  • Vigo, M. I., Sánchez-Reales, J. M., Trottini, M., & Chao, B. F. (2011). Mediterranean Sea level variations: Analysis of the satellite altimetric data, 19922008. Journal of Geodynamics, 52, 271–278. https://doi.org/10.1016/j.jog.2011.02.002.

    Article  Google Scholar 

  • Viúdez, A., Haney, R. L., & Tintoré, J. (1996). Circulation in the Alboran Sea as determined by quasi-synoptic hydrographic observations.Part II: Mesoscale ageostrophic motion diagnosed through density dynamical assimilation. Journal of Physical Oceanography, 26, 706724.

    Google Scholar 

  • Viúdez, A., Pinot, J. M., & Haney, R. L. (1998). On the upper layer circulation in the Alborn Sea. Journal of Geophysical Research, 103(C10), 21. https://doi.org/10.1029/98JC01082.

    Article  Google Scholar 

  • Woodworth, P. L., Gravelle, M., Marcos, M., & Wöppelmann, G. (2015). The status of measurement of the Mediterranean mean dynamic topography by geodetic techniques. Journal of Geodesy, 89, 811–827. https://doi.org/10.1007/s00190-015-0817-1.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers whose constructive comments/suggestions helped improve and clarify this manuscript. We acknowledge the support of all data providers: ESA CCI Sea Level Project for the Altimetry data, DTU SPACE from the Danish National Space Center for MDT and MSS products, the surface currents from the Mercator Ocean Project, and LEGOS and CERSAT for the Ekman Surface Currents. The work is supported by Taiwan MoST Grant #105-2811-M-001-031. M. Dolores Sempere is supported by the PhD Grant UAFPU2014-5884 from the University of Alicante.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Vigo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigo, M.I., Sempere, M.D., Chao, B.F. et al. Mediterranean Surface Geostrophic Circulation from Satellite Gravity and Altimetry Observations. Pure Appl. Geophys. 175, 3989–4005 (2018). https://doi.org/10.1007/s00024-018-1911-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1911-0

Keywords

Navigation