Skip to main content
Log in

Study on Ultra-deep Azimuthal Electromagnetic Resistivity LWD Tool by Influence Quantification on Azimuthal Depth of Investigation and Real Signal

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This paper proposes a new tool design of ultra-deep azimuthal electromagnetic (EM) resistivity logging while drilling (LWD) for deeper geosteering and formation evaluation, which can benefit hydrocarbon exploration and development. First, a forward numerical simulation of azimuthal EM resistivity LWD is created based on the fast Hankel transform (FHT) method, and its accuracy is confirmed under classic formation conditions. Then, a reasonable range of tool parameters is designed by analyzing the logging response. However, modern technological limitations pose challenges to selecting appropriate tool parameters for ultra-deep azimuthal detection under detectable signal conditions. Therefore, this paper uses grey relational analysis (GRA) to quantify the influence of tool parameters on voltage and azimuthal investigation depth. After analyzing thousands of simulation data under different environmental conditions, the random forest is used to fit data and identify an optimal combination of tool parameters due to its high efficiency and accuracy. Finally, the structure of the ultra-deep azimuthal EM resistivity LWD tool is designed with a theoretical azimuthal investigation depth of 27.42–29.89 m in classic different isotropic and anisotropic formations. This design serves as a reliable theoretical foundation for efficient geosteering and formation evaluation in high-angle and horizontal (HA/HZ) wells in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Anderson, W. L. (1979). Computer programs numerical integration of related Hankel transforms of order 0 and 1 by adaptive digital. Geophysics, 44(3), 1285–1305.

    Google Scholar 

  • Bailey, I. W., Ben-Zion, Y., Becker, T. W., & Holschneider, M. (2010). Quantifying focal mechanism heterogeneity for fault zones in central and southern California. Geophysical Journal International, 183(1), 433–450.

    Article  Google Scholar 

  • Bittar, M. S., Chemali, R. E., Pitcher, J. L., Cook, R., & Knutson, C. (2010). Real time proactive optimal well placement using geosignal and deep images. Offshore technology conference.

  • Chew, W. C. (1990). Waves and fields in inhomogeneous media (1st ed., pp. 133–147). New York: Van Nostrand Reinhold Company.

    Google Scholar 

  • Deng, J. L. (1989). Introduction to grey system. Journal of Grey System, 1, 1–24.

    Google Scholar 

  • Dupuis, C., & Mendoza Barrón, V. (2014). Avoid pilot holes, land wells, and optimize well placement and production with deep directional resistivity logging while drilling. SPE Drilling and Completion, 29(04), 473–480.

    Article  Google Scholar 

  • Gao J., Chen M.Y., & Shang Z.Y. (2003). Numerical simulation of electrical logging-while-drilling in anisotropic formation. 19th meeting of Chinese Geophysical Society, Beijing, C, 76.

  • Ghosh, D. P. (1971). The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements. Geophysical Prospecting, 19, 192–217.

    Article  Google Scholar 

  • Hartmann, A., Vianna, A., Maurer, H. M., & Sviridov, M., et al. (2014). Verification testing of a new extra-deep azimuthal resistivity measurement. SPWLA 55th annual logging symposium.

  • Homan, D., Misra, S., Rasmus, J., & Minerbo, G. N. (2016). Petrophysically-consistent calibration of full-tensor electromagnetic induction tools. US patent application No. 14/944,288.

  • Homan, D., Rasmus, J., Minerbo, G., Misra, S., & Gupta, A. (2016). Multi-frequency electromagnetic tensor measurements. US patent application No. 14/827,632.

  • Hu, J., & Nie, Z. P. (1998). A new method of Sommerfeld integral solution—fast Hankel transform. Chinese Journal of Electronics, 26(3), 126–128.

    Google Scholar 

  • Iversen, M., Fejerskov, M., Skjerdingstad, A. L., Clark, A. J., Denichou, J. M., Ortenzi, L., & Tabanou, J. R. (2003). Geosteering using ultradeep resistivity on the Grane field, Norwegian North Sea. SPWLA 44th annual logging symposium. Society of Petrophysicists and Well-Log Analysts.

  • Johansen, H. K., & Sørensen, K. (1979). Fast Hankel transforms. Geophysical Prospecting, 27(4), 876–901.

    Article  Google Scholar 

  • Kumar, A., Maheshwari, S., Sharma, C., & Beri, N. (2010). A study of multiobjective parametric optimization of silicon abrasive mixed electrical discharge machining of tool steel. Materials and Manufacturing Processes, 25(10), 1041–1047.

    Article  Google Scholar 

  • Larsen, D. S., Boesing, D., Hartmann, A., Martakov, S., Mumtaz, A., Skillings, J., & Vianna, A. (2018). Boundary detection ahead of the bit—a sensitivity study of extra deep azimuthal resistivity. In offshore technology conference Asia. Offshore technology conference.

  • Larsen, D. S., Hartmann, A., Luxey, P., Martakov, S., Skillings, J., Tosi, G., & Zappalorto, L. (2015). Extra-deep azimuthal resistivity for enhanced reservoir navigation in a complex reservoir in the Barents Sea. SPE annual technical conference and exhibition. Society of Petroleum Engineers.

  • Lian, C. B., Li, H. L., Zhong, J. H., et al. (2008). Interpretation method for oil and gas reservoirs based on gray relational analysis. Journal of China University of Petroleum, 32(1), 29–32.

    Google Scholar 

  • Liang, J. Y., Feng, C. J., & Song, P. (2016). Review of Hadoop analysis. Chinese Journal of Computers, 01, 1–18.

    Google Scholar 

  • Lin, Z. C., & Ho, C. Y. (2003). Analysis and application of grey relation and ANOVA in chemical–mechanical polishing process parameters. International Journal of Advanced Manufacturing Technology, 21, 10–14.

    Article  Google Scholar 

  • Liu, Z. Z. (2016). New trends in development of geosteering drilling technology. New Technology and New Products of China, 08, 83–84.

    Google Scholar 

  • Liu, S. F., Cai, H., Yang, Y. J., et al. (2013). The new development of grey relational analysis. System Engineering Theory and Practice, 08, 2041–2046.

    Google Scholar 

  • Liu, S. F., Dang, Y. G., et al. (2010). Theory and its applications of Grey system (5th ed.). Beijing: Science Press.

    Google Scholar 

  • Liu, F. W., Xie, C. L., Liu, C., et al. (2016). Quantitative evaluation of dense oil reservoirs based on gray relational analysis. Geological Science and Technology Information, 35(5), 168–175.

    Google Scholar 

  • Maillet, R. (1947). The fundamental equations of electrical prospecting. Geophysics, 12(4), 529–556.

    Article  Google Scholar 

  • Meena, V. K., & Azad, M. S. (2012). Grey relational analysis of micro-EDM machining of Ti-6Al-4V alloy. Materials and Manufacturing Processes, 27(9), 973–977.

    Article  Google Scholar 

  • Mike D., Jason P., & Michael, B. (2011). Modern azimuthal resistivity tools and their application to mature field development. SPWLA-INDIA 3rd annual logging symposium.

  • Misra, S. (2015). Wideband directional complex electrical conductivity of geomaterials: A mechanistic description (Doctoral dissertation).

  • Misra, S., Torres-Verdín, C., Homan, D., Minerbo, G., & Rasmus, J. (2015). Laboratory investigation of petrophysical applications of multi-frequency inductive-complex conductivity tensor measurements. In SPWLA 56th annual logging symposium. Society of Petrophysicists and Well-Log Analysts.

  • Moran, J. H., & Gianzero, S. (1979). Effects of formation anisotropy on resistivity logging measurements. Geophysics, 44(7), 1266–1286.

    Article  Google Scholar 

  • Mu, R., & Zhang, J. T. (2008). Comprehensive AHP evaluation based on grey correlation analysis. System Engineering Theory and Practice, 28(10), 125–130.

    Google Scholar 

  • Nagesh, S., Murthy, H. N., Krishna, M., & Basavaraj, H. (2013). Parametric study of CO2 laser drilling of carbon nanopowder/vinylester/glass nanocomposites using design of experiments and grey relational analysis. Optics and Laser Technology, 48, 480–488.

    Article  Google Scholar 

  • Ni, J. P., Li, P., et al. (2009). Development potentiality evaluation of regional land based on AHP and entropy weight method. Transactions of the Chinese Society of Agricultural Engineering, 25(5), 202–209.

    Google Scholar 

  • Omeragic D, & Li Q, et al. (2005). Deep directional EM measurements for optimal well placement. SPE annual technical conference and exhibition. Society of Petroleum Engineers.

  • Palanikumar, K., Latha, B., Senthilkumar, V. S., & Davim, J. P. (2012). Analysis on drilling of glass fiber-reinforced polymer (GFRP) composites using grey relational analysis. Materials and Manufacturing Processes, 27(3), 297–305.

    Article  Google Scholar 

  • Pandey, R. K., & Panda, S. S. (2015). Optimization of multiple quality characteristics in bone drilling using grey relational analysis. Journal of orthopaedics, 12, 39–45.

    Article  Google Scholar 

  • Pearson, K. (1895). Mathematical contributions to the theory of evolution (Ш): Regression, heredity, and panmixia. Philosophical Transactions of Royal Society of London Series A Containing Papers of a Mathematical or Physical Character, 187, 253–318.

    Article  Google Scholar 

  • Prakash, S., Mercy, J. L., Salugu, M. K., & Vineeth, K. S. M. (2015). Optimization of drilling characteristics using grey relational Analysis (GRA) in medium density fiber board (MDF). Materials Today Proceedings, 2(4–5), 1541–1551.

    Article  Google Scholar 

  • Qi, M. S. R., & Wang, H. N. (2003). Forward modeling of induction well logging in deviated well. Chinese Journal of Computer Physics, 20(2), 161–168.

    Google Scholar 

  • Rabinovich M, Tabarovsky L, & Corley B, et al. (2005). Processing multi-component induction data for formation dip and azimuth in anisotropic formations. SPWLA 46th annual logging symposium, New Orleans, 506-526.

  • Sun H. W., Lv C. Y., & Qi A. Q., et al. (2015). Research on the data standardization in comprehensive evaluation. China Academic Journal Electronic Publishing House, 32(02), 342–344, 349.

  • Saikia, K. (2013). Real-time modeling-while-drilling for optimized geosteering and enhanced horizontal well placement in thin and complex reservoirs. IPTC 2013: international petroleum technology conference.

  • Seifert, D. J., Chemali, R. E., Bittar, M. S., Althoff, G. D., & Lotfy, A. (2011). Hydrocarbon reservoirs where proactive geosteering is most likely to succeed. SPE/IADC drilling conference and exhibition. Society of Petroleum Engineers.

  • Singh, S. (2012). Optimization of machining characteristics in electric discharge machining of 6061Al/Al2O3 p/20P composites by grey relational analysis. The International Journal of Advanced Manufacturing Technology, 63(9), 1191–1202.

    Article  Google Scholar 

  • Song D. G. (2014). Numerical simulation and geosteering application of electromagnetic LWD. China University of Geoscience (Beijing).

  • Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15(1), 72–101.

    Article  Google Scholar 

  • Tan, X. R., & Deng, J. L. (1995). Grey relational analysis: A new method of multivariate statistical analysis. Statistical Research, 03, 46–48.

    Google Scholar 

  • Tang, L., & Yang, S. (2013). Experimental investigation on the electrochemical machining of 00Cr12Ni9Mo4Cu2 material and multi-objective parameters optimization. International Journal of Advanced Manufacturing Technology, 67, 2909–2916.

    Article  Google Scholar 

  • Tilsley-Baker, R., et al. (2015). The importance of extra-deep Azimuthal resistivity in reservoir development: An update on recent field experiences. OTC Brasil. Offshore technology conference.

  • Tu, Y., Xie, C. L., Liu, C., et al. (2012). Application of gray relational analysis in reservoir evaluation of Qingdong depression. Natural Gas Geoscience, 23(2), 381–386.

    Google Scholar 

  • Wang, H. N., Tao, H. G., Yao, J. J., et al. (2008). Fast multiparameter reconstruction of multicomponent induction well logging datum in deviated well in a horizontally stratified anisotropic formation. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1525–1534.

    Article  Google Scholar 

  • Wang, T., Yu, L., & Fanini, O. (2003). Multicomponent induction response in a borehole environment. Geophysics, 68(5), 1510–1518.

    Article  Google Scholar 

  • Wu, Y. M., Xiong, S. Q., Li, C. Y., et al. (2013). The application of AziTrak in Development wells geosteering. Well Logging Technology, 05, 547–551.

    Google Scholar 

  • Xiao, J. Q., & Zhang, G. J. (1995). Calculation of electromagnetic field of dipole antennas in layered media based on FHT method. Journal of the University of Petroleum, China (Edition of Natural Science), 19(5), 25–29.

    Google Scholar 

  • Yang, J. Z. (2014). Influence factors of azimuthal electromagnetic resistivity LWD on prediction of formation boundary. Well Logging Technology, 01(39–45), 50.

    Google Scholar 

  • Yang, Z., Lu, Y., et al. (2010a). Three types of correlation analysis method to analyze influence factors on production capacity after fracturing. Inner Mongolia Petrochemical Industry, 16, 46–47.

    Google Scholar 

  • Yang, X. C., Sang, S. X., & Fang, L.C., et al. (2010). Application of gray relational Analysis in coalbed methane reservoir evaluation. Journal of Xi’An University of Science and Technology, 30(2), 202–206, 221.

  • Zhang, G. J. (1984). Electrical logging (pp. 159–163). Beijing: Beijing Petroleum Industry Press.

    Google Scholar 

  • Zhang, H. S. (1991). Quantitative assessment of log inversion based on grey relational analysis method. Journal of Jiaozuo Institute of Technology, 01, 7–13.

    Google Scholar 

  • Zhang, J. H., Liu, Z. H., & Wu, J. (1984). The principles and applications of electrical logging (pp. 159–163). Beijing: Beijing Petroleum Industry Press.

    Google Scholar 

  • Zhong, L. L., Li, J., Bhardwaj, A., et al. (2008). Computation of triaxial induction logging tools in layered anisotropic dipping formations. IEEE Transactions on Geoscience and Remote Sensing, 46(4), 1148–1163.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by College of Geophysics and Information Engineering, China University of Petroleum (Beijing). The authors are deeply appreciative of CNPC Logging Company Limited for the financial support (2015A-3915).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kesai Li or Jie Gao.

Appendix

Appendix

We set ρ = ex, kρ= ey in Eq. (13) and multiple by ex on both sides (Anderson 1979):

$$e^{x} {\text{g}}\left( {e^{x} } \right) = \int_{ - \infty }^{\infty } {e^{ - y} } f\left( {e^{ - y} } \right)e^{x - y} J_{\nu } \left( {e^{x - y} } \right){\text{d}}y.$$
(20)

When G(x)= exg(ex), F(y)= eyf(ey), and Hv(y)= eyJv(ey), Eq. (20) can be translated into convolution form as follows:

$$G\left( x \right) = \int_{ - \infty }^{\infty } {F\left( y \right)H_{v} \left( {x - y} \right){\text{d}}y} ,$$
(21)

where G can be seen as the system respond of input function F and linear filtering function Hv. Then, the sinusoidal interpolation function is as follows (Ghosh 1971):

$$T({\text{t}}){ = }\frac{{\sin \left[ {\frac{\pi }{\Delta } \cdot (t - n\Delta )} \right]}}{{\frac{\pi }{\Delta } \cdot (t - n\Delta )}},$$
(22)

where Δ is the sampling interval and defined as \(P(x) = \frac{\sin (\pi x)}{\pi x}\).

Then, Eq. (22) can be written as: \(T({\text{t) = }}P\left( {\frac{t}{\Delta } - n} \right)\). The approximate value of F(y) is F*(y) which is calculated by the sample of Eq. (21) based on Eq. (22) (Johansen and Sørensen 1979):

$$\begin{aligned} F^{*} (y) = & \sum\limits_{n = - \infty }^{\infty } {F(n\Delta )T\left( y \right)} , \\ { = } & \sum\limits_{n = - \infty }^{\infty } {F(n\Delta )P\left( {\frac{y}{\Delta } - n} \right)} . \\ \end{aligned}$$
(23)

According to Eqs. (21) and (23), we can obtain G*(x) which is the approximate value of G(x) (Johansen and Sørensen 1979):

$$\begin{aligned} G^{*} (x) = & \int_{ - \infty }^{\infty } {F^{*} (y)H_{v} (x - y)} {\text{d}}y, \\ { = } & \int_{ - \infty }^{\infty } {\left[ {\sum\limits_{n = - \infty }^{\infty } {F(n\Delta )} P\left( {\frac{y}{\Delta } - n} \right)} \right]H_{v} (x - y){\text{d}}y} , \\ = & \sum\limits_{n = - \infty }^{\infty } {F(n\Delta )} H_{v}^{*} (x - n\Delta ), \\ \end{aligned}$$
(24)

where \(H^{*} (x) = \int_{ - \infty }^{\infty } {P\left( {\frac{y}{\Delta }} \right)H_{v} (x - y){\text{d}}y}\) is the filtering coefficient.

Actually, the filtering coefficient is in exponential decay when nΔ → ∞. Therefore, Eq. (24) can be solved under the condition of limited filter length. We set x = mΔ (m is an integer), n′ mn and substitute Eq. (24) into Eq. (25) to greatly reduce the amount of calculation (Hu and Nie 1998):

$$G^{ *} \left( {m\Delta } \right){ = }\sum\limits_{{n^{\prime} = N_{1} }}^{{N_{2} }} {F[(m - n^{\prime} )\Delta ]} H_{\text{v}}^{ *} (n^{\prime}\Delta ),$$
(25)

where the sum limit N1, N2 is defined by the characteristic of function \(f\left( {k_{\rho } } \right)\) and filter functions H *v (y) when \(k_{\rho } \to \infty\) and \(y \to \pm \infty\), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Gao, J., Ju, X. et al. Study on Ultra-deep Azimuthal Electromagnetic Resistivity LWD Tool by Influence Quantification on Azimuthal Depth of Investigation and Real Signal. Pure Appl. Geophys. 175, 4465–4482 (2018). https://doi.org/10.1007/s00024-018-1899-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1899-5

Keywords

Navigation