3-D Upper-Mantle Shear Velocity Model Beneath the Contiguous United States Based on Broadband Surface Wave from Ambient Seismic Noise

Abstract

Ambient noise seismic tomography has been widely used to study crustal and upper-mantle shear velocity structures. Most studies, however, concentrate on short period (< 50 s) surface wave from ambient noise, while studies using long period surface wave from ambient noise are limited. In this paper, we demonstrate the feasibility of using long-period surface wave from ambient noise to study the lithospheric structure on a continental scale. We use broadband Rayleigh wave phase velocities to obtain a 3-D VS structures beneath the contiguous United States at period band of 10–150 s. During the inversion, 1-D shear wave velocity profile is parameterized using B-spline at each grid point and is inverted with nonlinear Markov Chain Monte Carlo method. Then, a 3-D shear velocity model is constructed by assembling all the 1-D shear velocity profiles. Our model is overall consistent with existing models which are based on multiple datasets or data from earthquakes. Our model along with the other post-USArray models reveal lithosphere structures in the upper mantle, which are consistent with the geological tectonic background (e.g., the craton root and regional upwelling provinces). The model has comparable resolution on lithosphere structures compared with many published results and can be used for future detailed regional or continental studies and analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abt, D. L., Fischer, K. M., French, S. W., Ford, H. A., Yuan, H., & Romanowicz, B. (2010). North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. Journal of Geophysical Research: Solid Earth, 115(B9). https://doi.org/10.1029/2009JB006914.

  2. Afonso, J. C., Fullea, J., Griffin, W. L., Yang, Y., Jones, A. G., Connolly, J. A. D., et al. (2013a). 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: A priori petrological information and geophysical observables. Journal of Geophysical Research Solid Earth, 118(5), 2586–2617. https://doi.org/10.1002/jgrb.50124.

    Article  Google Scholar 

  3. Afonso, J. C., Fullea, J., Yang, Y., Connolly, J. A. D., & Jones, A. G. (2013b). 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: General methodology and resolution analysis. Journal of Geophysical Research Solid Earth, 118(4), 1650–1676.

    Article  Google Scholar 

  4. Barmin, M. P., Levshin, A. L., Yang, Y., & Ritzwoller, M. H. (2011). Epicentral location based on rayleigh wave empirical green’s functions from ambient seismic noise. Geophysical Journal International, 184(2), 869–884. https://doi.org/10.1111/j.1365-246X.2010.04879.x.

    Article  Google Scholar 

  5. Bartzsch, S., Lebedev, S., & Meier, T. (2011). Resolving the lithosphere–asthenosphere boundary with seismic Rayleigh waves. Geophysical Journal International, 186(3), 1152–1164.

    Article  Google Scholar 

  6. Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., et al. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x.

    Article  Google Scholar 

  7. Bensen, G. D., Ritzwoller, M. H., & Shapiro, N. M. (2008). Broadband ambient noise surface wave tomography across the United States. Journal of Geophysical Research, 113(B5), B05306.

    Article  Google Scholar 

  8. Bodin, T., Sambridge, M., Tkalčić, H., Arroucau, P., Gallagher, K., & Rawlinson, N. (2012). Transdimensional inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research Solid Earth, 117(B2), B02301. https://doi.org/10.1029/2011JB008560.

    Article  Google Scholar 

  9. Chu, R., & Helmberger, D. V. (2014). Lithospheric waveguide beneath the Midwestern United States; massive low-velocity zone in the lower crust. Geochemistry, Geophysics, Geosystems, 15(4), 1348–1362.

    Article  Google Scholar 

  10. Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7.

    Article  Google Scholar 

  11. Ekström, G. (2011). A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25-250 s. Geophysical Journal International, 187(3), 1668–1686. https://doi.org/10.1111/j.1365-246X.2011.05225.x.

    Article  Google Scholar 

  12. Ekström, G. (2014). Love and Rayleigh phase-velocity maps, 5–40 s, of the western and central USA from USArray data. Earth Planet Science Letter, 402, 42–49. https://doi.org/10.1016/j.epsl.2013.11.022.

    Article  Google Scholar 

  13. Ekström, G. (2017). Short-period surface-wave phase velocities across the conterminous United States. Physics Earth Planetary Interiors, 270, 168–175. https://doi.org/10.1016/j.pepi.2017.07.010.

    Article  Google Scholar 

  14. Fenneman, N. M. (1917). Physiographic divisions of the United States. Proceedings of the National academy of Sciences of the United States of America, 1(3), 17–22.

    Article  Google Scholar 

  15. Foster, A., Ekström, G., & Nettles, M. (2014). Surface wave phase velocities of the Western United States from a two-station method. Geophysical Journal International, 196(2), 1189–1206.

    Article  Google Scholar 

  16. Godey, S., Snieder, R., Villaseñor, A., & Benz, H. M. (2003a). Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: Phase velocity maps and limitations of ray theory. Geophysical Journal International, 152(3), 620–632. https://doi.org/10.1046/j.1365-246X.2003.01866.x.

    Article  Google Scholar 

  17. Godey, S., Snieder, R., Villaseñor, A., & Benz, H. M. (2003b). Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: Phase velocity maps and limitations of ray theory. Geophysical Journal International, 152(3), 620–632. https://doi.org/10.1046/j.1365-246X.2003.01866.x.

    Article  Google Scholar 

  18. Grand, S. P., & Helmberger, D. V. (1984). Upper mantle shear structure of North America. Geophysical Journal International, 76(2), 399–438.

    Article  Google Scholar 

  19. Guo, Z., Chen, Y. J., Ning, J., Yang, Y., Afonso, J. C., & Tang, Y. (2016). Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in Northeast China. Earth Planet Science Letter, 433, 31–43. https://doi.org/10.1016/j.epsl.2015.09.035.

    Article  Google Scholar 

  20. Haario, H., Laine, M., Mira, A., & Saksman, E. (2006). DRAM: Efficient adaptive MCMC. Statistics and Computing, 16(4), 339–354. https://doi.org/10.1007/s11222-006-9438-0.

    Article  Google Scholar 

  21. Haned, A., Stutzmann, E., Schimmel, M., Kiselev, S., Davaille, A., & Yelles-Chaouche, A. (2015). Global tomography using seismic hum. Geophysical Journal International, 204(2), 1222–1236.

    Article  Google Scholar 

  22. Hawley, W. B., Allen, R. M., & Richards, M. A. (2016). Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate. Science, 353(6306), 1406–1408.

    Article  Google Scholar 

  23. Hoffman, P. F. (1988). United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences, 16(1), 543–603.

    Article  Google Scholar 

  24. Hoffman, P. F. (1989). Precambrian geology and tectonic history of North America. In A. W. Bally & A. R. Palmer (Eds.), The geology of North America—An overview (pp. 447–512). Boulder, CO: Geology Society of America.

    Google Scholar 

  25. Humphreys, E. D., Schmandt, B., Bezada, M. J., & Perry-Houts, J. (2015). Recent craton growth by slab stacking beneath Wyoming. Earth Planet Science Letter, 429, 170–180.

    Article  Google Scholar 

  26. Jia, Z., Ni, S., Chu, R., & Zhan, Z. (2017). Joint inversion for earthquake depths using local waveforms and amplitude spectra of Rayleigh waves. Pure and Applied Geophysics, 174(1), 261–277.

    Article  Google Scholar 

  27. Kaban, M. K., Mooney, W. D., & Petrunin, A. G. (2015). Cratonic root beneath North America shifted by basal drag from the convecting mantle. Nature Geoscience, 8(10), 797.

    Article  Google Scholar 

  28. Lebedev, S., Adam, J. M.-C., & Meier, T. (2013). Mapping the Moho with seismic surface waves: A review, resolution analysis, and recommended inversion strategies. Tectonophysics, 609, 377–394. https://doi.org/10.1016/j.tecto.2012.12.030.

    Article  Google Scholar 

  29. Lebedev, S., & Van Der Hilst, R. D. (2008). Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophysical Journal International, 173(2), 505–518.

    Article  Google Scholar 

  30. Lin, F.-C., Moschetti, M. P., & Ritzwoller, M. H. (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International, 173(1), 281–298. https://doi.org/10.1111/j.1365-.

    Article  Google Scholar 

  31. Lin, F.-C., Ritzwoller, M. H., Yang, Y., Moschetti, M. P., & Fouch, M. J. (2011). Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States. Nature Geoscience, 4(1), 55.

    Article  Google Scholar 

  32. Luo, Y., Yang, Y., Xu, Y., Xu, H., Zhao, K., & Wang, K. (2015). On the limitations of interstation distances in ambient noise tomography. Geophysical Journal International, 201(2), 652–661. https://doi.org/10.1093/gji/ggv043.

    Article  Google Scholar 

  33. Ma, S., Prieto, G. A., & Beroza, G. C. (2008). Testing community velocity models for Southern California using the ambient seismic field. Bulletin of the Seismological Society of America, 98(6), 2694–2714. https://doi.org/10.1785/0120080947.

    Article  Google Scholar 

  34. Marone, F., Gung, Y., & Romanowicz, B. (2007). Three-dimensional radial anisotropic structure of the North American upper mantle from inversion of surface waveform data. Geophysical Journal International, 171(1), 206–222.

    Article  Google Scholar 

  35. Masters, G., Barmine, M. P., & Kientz, S. (2007). Mineos user’s manual. Geodyn: Computational Infrastructure.

    Google Scholar 

  36. Mégnin, C., & Romanowicz, B. (2000). The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms. Geophysical Journal International, 143(3), 709–728.

    Article  Google Scholar 

  37. Menke, W., Skryzalin, P., Levin, V., Harper, T., Darbyshire, F., & Dong, T. (2016). The Northern Appalachian Anomaly: A modern asthenospheric upwelling. Geophysical Research Letters. https://doi.org/10.1002/2016GL070918.

    Article  Google Scholar 

  38. Moschetti, M. P., Ritzwoller, M. H., Lin, F.-C., & Yang, Y. (2010). Crustal shear wave velocity structure of the western United States inferred from ambient seismic noise and earthquake data. Journal of Geophysical Research Solid Earth, 115(B10), B10306. https://doi.org/10.1029/2010JB007448.

    Article  Google Scholar 

  39. Moschetti, M., Ritzwoller, M. H., & Shapiro, N. M. (2007). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochemistry, Geophysics, Geosystems, 8(Q08010), 2007. https://doi.org/10.1029/2007GC001655.

    Article  Google Scholar 

  40. Nishida, K., Montagner, J.-P., & Kawakatsu, H. (2009). Global surface wave tomography using seismic hum. Science, 326(5949), 112. https://doi.org/10.1126/science.1176389.

    Article  Google Scholar 

  41. Özalaybey, S., Savage, M. K., Sheehan, A. F., Louie, J. N., & Brune, J. N. (1997). Shear-wave velocity structure in the northern Basin and Range province from the combined analysis of receiver functions and surface waves. Bulletin of the Seismological Society of America, 87(1), 183–199.

    Google Scholar 

  42. Pollitz, F. F., & Mooney, W. D. (2016). Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging. Geophysical Research Letters, 43(1), 118–126.

    Article  Google Scholar 

  43. Porter, R., Liu, Y., & Holt, W. E. (2016). Lithospheric records of orogeny within the continental U.S. Geophysics Research Letter, 43(1), 50. https://doi.org/10.1002/2015gl066950.

    Article  Google Scholar 

  44. Ritzwoller, M. H., Shapiro, N. M., Barmin, M. P., & Levshin, A. L. (2002). Global surface wave diffraction tomography. Journal of Geophysical Research: Solid Earth, 107(B12), 2335. https://doi.org/10.1029/2002JB001777.

    Article  Google Scholar 

  45. Savage, B., Covellone, B. M., & Shen, Y. (2017). Wave speed structure of the eastern North American margin. Earth Planet Science Letter, 459, 394–405.

    Article  Google Scholar 

  46. Saygin, E., & Kennett, B. L. N. (2012). Crustal structure of Australia from ambient seismic noise tomography. Journal of Geophysical Research: Solid Earth, 117(B1), B01304. https://doi.org/10.1029/2011JB008403.

    Article  Google Scholar 

  47. Schaeffer, A. J., & Lebedev, S. (2014). Imaging the North American continent using waveform inversion of global and USArray data. Earth Planet Science Letter, 402, 26–41. https://doi.org/10.1016/j.epsl.2014.05.014.

    Article  Google Scholar 

  48. Schmandt, B., & Lin, F.-C. (2014). P and S wave tomography of the mantle beneath the United States. Geophysical Research Letters, 41(18), 6342–6349.

    Article  Google Scholar 

  49. Shapiro, N. M., & Ritzwoller, M. H. (2002). Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophysical Journal International, 151(1), 88–105.

    Article  Google Scholar 

  50. Shen, Y., Ren, Y., Gao, H., & Savage, B. (2012). An improved method to extract very-broadband empirical Green’s functions from ambient seismic noise. Bulletin of the Seismological Society of America, 102(4), 1872–1877. https://doi.org/10.1785/0120120023.

    Article  Google Scholar 

  51. Shen, W., & Ritzwoller, M. H. (2016). Crustal and uppermost mantle structure beneath the United States. Journal of Geophysical Research Solid Earth, 121(6), 2016JB012887. https://doi.org/10.1002/2016jb012887.

    Article  Google Scholar 

  52. Shen, W., Ritzwoller, M. H., & Schulte-Pelkum, V. (2013a). A 3-D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research Solid Earth, 118(1), 262–276. https://doi.org/10.1029/2012JB009602.

    Article  Google Scholar 

  53. Shen, W., Ritzwoller, M. H., Schulte-Pelkum, V., & Lin, F.-C. (2013b). Joint inversion of surface wave dispersion and receiver functions: A Bayesian Monte-Carlo approach. Geophysical Journal International, 192(2), 807–836.

    Article  Google Scholar 

  54. Thomas, W. A. (2006). Tectonic inheritance at a continental margin. GSA Today, 16(2), 4–11.

    Article  Google Scholar 

  55. Tian, Y., & Zhao, D. (2012). P-wave tomography of the western United States: Insight into the Yellowstone hotspot and the Juan de Fuca slab. Physics of the Earth and Planetary Interiors, 200, 72–84.

    Article  Google Scholar 

  56. Trampert, J., & Woodhouse, J. H. (2003). Global anisotropic phase velocity maps for fundamental mode surface waves between 40 and 150 S. Geophysical Journal International, 154(1), 154–165. https://doi.org/10.1046/j.1365-246X.2003.01952.x.

    Article  Google Scholar 

  57. Whitmeyer, S. J., & Karlstrom, K. E. (2007). Tectonic model for the proterozoic growth of North America. Geosphere, 3(4), 220–259.

    Article  Google Scholar 

  58. Xia, Y., Ni, S., & Zeng, X. (2013). Twin enigmatic microseismic sources in the Gulf of Guinea observed on intercontinental seismic stations. Geophysical Journal International. https://doi.org/10.1093/gji/ggt076.

    Article  Google Scholar 

  59. Xie, J., Yang, Y., & Ni, S. (2016). On the accuracy of long-period Rayleigh waves extracted from ambient noise. Geophysical Journal International, 206(1), 48–55.

    Article  Google Scholar 

  60. Xing, G., Niu, F., Chen, M., & Yang, Y. (2016). Effects of shallow density structure on the inversion for crustal shear wave speeds in surface wave tomography. Geophysical Journal International, 205(2), 1144–1152.

    Article  Google Scholar 

  61. Yang, Y. (2014). Application of teleseismic long-period surface waves from ambient noise in regional surface wave tomography: A case study in western USA. Geophysical Journal International, 198(3), 1644–1652. https://doi.org/10.1093/gji/ggu234.

    Article  Google Scholar 

  62. Yang, Y., Ritzwoller, M. H., Lin, F.-C., Moschetti, M. P., & Shapiro, N. M. (2008). Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography. Journal of Geophysical Research Solid Earth, 113(B12), B12310. https://doi.org/10.1029/2008JB005833.

    Article  Google Scholar 

  63. Yuan, H., & Romanowicz, B. (2010). Lithospheric layering in the North American craton. Nature, 466(7310), 1063–1068. https://doi.org/10.1038/nature09332.

    Article  Google Scholar 

  64. Zeng, X., & Ni, S. (2010). A persistent localized microseismic source near the Kyushu Island, Japan. Geophysical Research Letters, 37(24), L24307. https://doi.org/10.1029/2010GL045774.

    Article  Google Scholar 

  65. Zeng, X., Xie, J., & Ni, S. (2015). Ground truth location of earthquakes by use of ambient seismic noise from a sparse seismic network: A case study in Western Australia. Pure and Applied Geophysics, 172(6), 1397–1407.

    Article  Google Scholar 

  66. Zhao, K., Luo, Y., & Xie, J. (2017). Broad-band Rayleigh wave phase velocity maps (10–150 s) across the United States from ambient noise data. Geophysical Journal International, 208(2), 1265–1275. https://doi.org/10.1093/gji/ggw460.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the editor and anonymous reviewers for their constructive suggestions. All seismic data are obtained from the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC) at http://www.iris.edu/dms/dmc/. This work was financially supported by the Major Program of the National Natural Science Foundation of China (NSFC) under grant 41590854, the Strategic Priority Research Program (B) of Chinese Academy of Sciences through grant XDB18000000, and NSFC through grant 41704065.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Risheng Chu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2344 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Chu, R. & Yang, Y. 3-D Upper-Mantle Shear Velocity Model Beneath the Contiguous United States Based on Broadband Surface Wave from Ambient Seismic Noise. Pure Appl. Geophys. 175, 3403–3418 (2018). https://doi.org/10.1007/s00024-018-1881-2

Download citation